Omega-3 fatty acids rich foods free from contaminants and suitable for vegetarians, and its significance in the normal neurological development

Authors

  • Ángeles Molina-Peralta Estudis de Ciències de la Salut, Institut Internacional de Postgrau de la Universitat Oberta de Catalunya (UOC), Barcelona.
  • Núria Mach Estudis de Ciències de la Salut, Institut Internacional de Postgrau de la Universitat Oberta de Catalunya (UOC), Barcelona. INRA, Département de Génétique Animale et Biologie Intégrative, Jouy-en-Josas.

DOI:

https://doi.org/10.14306/renhyd.18.2.26

Keywords:

Fatty acids, Omega-3, Vegetarian diet, Child development

Abstract

Essential long chain v-3 polyunsaturated fatty acids as a-linolenic acid (ALA) and its derivatives, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are involved in the growth and function of nervous tissue as structural components of the neuronal membrane. The maternal intake of v-3 fatty acid during pregnancy and breastfeeding must come from non-animal sources free from dioxins and heavy metals to ensure the normal development of the neural structures of infants. Various lead sources were consulted, including scientific reviews, studies with animal models, cellular assays and clinical trials in the following data bases: PubMed central (PMC)-NBCI, Elsevier Journal, Scielo España, Scirus and Science Direct, in order to assess the potential effect of algae, fungi, marine bacteria and other vegetarian sources of v-3 fatty acids on the neural development of infant.

Downloads

Download data is not yet available.

References

Bourre JM, Bonneil M, Chaudiere J, Clement M, Dumont O, Durand G, et al. Structural and functional importance of dietary polyunsaturated fatty acids in the nervous system. Adv Exp Med Biol. 1992; 318: 211-29. DOI: https://doi.org/10.1007/978-1-4615-3426-6_18

Farquharson J, Jamieson EC, Abbasi KA, Patrick WJ, Logan RW, Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child. 1995; 72(3): 198-203. DOI: https://doi.org/10.1136/adc.72.3.198

Mayes C, Burdge GC, Bingham A, Murphy JL, Tubman R, Wootton SA. Variation in [U-13C] alpha linolenic acid absorption, betaoxidation and conversion to docosahexaenoic acid in the preterm infant fed a DHA-enriched formula. Pediatr Res. 2006; 59(2): 271-5. DOI: https://doi.org/10.1203/01.pdr.0000196372.29648.7a

Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006; 67(12): 1954-67. DOI: https://doi.org/10.4088/JCP.v67n1217

O’Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE, et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics. 2001; 108(2): 359-71. DOI: https://doi.org/10.1542/peds.108.2.359

Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003; 111(1): e39-44. DOI: https://doi.org/10.1542/peds.111.1.e39

Drouillet P, Kaminski M, De Lauzon-Guillain B, Forhan A, Ducimetiere P, Schweitzer M, et al. Association between maternal seafood consumption before pregnancy and fetal growth: evidence for an association in overweight women. The EDEN mother-child cohort. Paediatr Perinat Epidemiol. 2009; 23(1): 76-86. DOI: https://doi.org/10.1111/j.1365-3016.2008.00982.x

Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007; 369(9561): 578-85. DOI: https://doi.org/10.1016/S0140-6736(07)60277-3

Innis SM, Friesen RW. Essential n-3 fatty acids in pregnant women and early visual acuity maturation in term infants. Am J Clin Nutr. 2008; 87(3): 548-57. DOI: https://doi.org/10.1093/ajcn/87.3.548

Simopoulos AP. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet. 2003; 92: 1-22. DOI: https://doi.org/10.1159/000073788

Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002; 56(8): 365-79. DOI: https://doi.org/10.1016/S0753-3322(02)00253-6

Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009; 109(7): 1266-82. DOI: https://doi.org/10.1016/j.jada.2009.05.027

Davis BC, Kris-Etherton PM. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 2003; 78(3 Suppl): 640S-646S. DOI: https://doi.org/10.1093/ajcn/78.3.640S

Domingo JL, Bocio A. Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review. Environ Int. 2007; 33(3): 397-405. DOI: https://doi.org/10.1016/j.envint.2006.12.004

Domingo JL, Bocio A, Marti-Cid R, Llobet JM. Benefits and risks of fish consumption Part II. RIBEPEIX, a computer program to optimize the balance between the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007; 230(2-3): 227-33. DOI: https://doi.org/10.1016/j.tox.2006.11.059

Domingo JL, Bocio A, Falco G, Llobet JM. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007; 230(2-3): 219-26. DOI: https://doi.org/10.1016/j.tox.2006.11.054

Arterburn LM, Oken HA, Bailey Hall E, Hamersley J, Kuratko CN, Hoffman JP. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. J Am Diet Assoc. 2008; 108(7): 1204-9. DOI: https://doi.org/10.1016/j.jada.2008.04.020

Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004; 65(6): 635-48. DOI: https://doi.org/10.1007/s00253-004-1647-x

Valenzuela RB, Tapia GO, González M, Valenzuela A. Ácidos grasos omega-3 (EPA y DHA) y su aplicación en diversas situaciones clínicas. Rev Chil Nutr. 2011; 38(8): 356-67. DOI: https://doi.org/10.4067/S0717-75182011000300011

Vanhouwelingen AC, Puls J, Hornstra G. Fetal Essential Fatty-Acid (Efa) Status during Early Human-Development-Relationship with Maternal Efa Status. Am J Clin Nutr. 1993; 57(5):S814. DOI: https://doi.org/10.1093/ajcn/57.5.814S

Vonhouwelingen AC, Puls J, Hornstra G. Essential Fatty-Acid Status during Early Human-Development. Early Hum Dev. 1992; 31(2): 97-111. DOI: https://doi.org/10.1016/0378-3782(92)90038-I

Dupont J. Fats and oils. Sadler M, editor Encyclopedia of Human Nutrition USA. Academic Press. 1999: 719–29.

Benatti P, Peluso G, Nicolai R, Calvani M. Polyunsaturated fatty acids: Biochemical, nutritional and epigenetic properties. J Am Coll Nutr. 2004; 23(4): 281-302. DOI: https://doi.org/10.1080/07315724.2004.10719371

Uauy R, Mena P, Rojas C. Essential fatty acids in early life: structural and functional role. Proc Nutr Soc. 2000; 59(1): 3-15. DOI: https://doi.org/10.1017/S0029665100000021

Kang JX. Balance of omega-6/omega-3 essential fatty acids is important for health. The evidence from gene transfer studies. World Rev Nutr Diet. 2005, 95: 93-102. DOI: https://doi.org/10.1159/000088276

Qiu X. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fatty Acids. 2003; 68(2): 181-6. DOI: https://doi.org/10.1016/S0952-3278(02)00268-5

Salem N Jr, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001; 36(9): 945-59. DOI: https://doi.org/10.1007/s11745-001-0805-6

Sprecher H, Chen Q, Yin FQ. Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process. Lipids. 1999; 34 Suppl: S153-6. DOI: https://doi.org/10.1007/BF02562271

Burdge GC, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002; 88(4): 411-20. DOI: https://doi.org/10.1079/BJN2002689

Kitajka K, Puskas LG, Zvara A, Hackler L Jr, Barcelo-Coblijn G, Yeo YK, et al. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A. 2002; 99(5): 2619-24. DOI: https://doi.org/10.1073/pnas.042698699

Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Med. 2008; 10(4): 219-35. DOI: https://doi.org/10.1007/s12017-008-8036-z

de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000; 290(5499): 2140-4. DOI: https://doi.org/10.1126/science.290.5499.2140

Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T, et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics. 2004; 3(7): 692-703. DOI: https://doi.org/10.1074/mcp.M400003-MCP200

Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alphalinolenic acid metabolism in young men*. Br J Nutr. 2002; 88(4): 355-63. DOI: https://doi.org/10.1079/BJN2002662

Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005; 75(4): 275-93. DOI: https://doi.org/10.1016/j.pneurobio.2005.03.002

McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids. 2006; 75(4-5): 329-49. DOI: https://doi.org/10.1016/j.plefa.2006.07.010

Hamilton L, Greiner R, Salem N Jr, Kim HY. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids. 2000; 35(8): 863-9. DOI: https://doi.org/10.1007/S11745-000-0595-x

Newton AC. Protein kinase C. structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev. 2001; 101(8): 2353-64. DOI: https://doi.org/10.1021/cr0002801

Rauch ME, Ferguson CG, Prestwich GD, Cafiso DS. Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spinlabeled

phosphatidylinositol 4,5-bisphosphate in lipid bilayers. J Biol Chem. 2002; 277(16): 14068-76. DOI: https://doi.org/10.1074/jbc.M109572200

McNamara RK, Lenox RH. The myristoylated alanine-rich C kinase substrate: a lithium-regulated protein linking cellular signaling and cytoskeletal plasticity. Clinical Neuroscience Research. 2004; 4(3-4): 155-69. DOI: https://doi.org/10.1016/j.cnr.2004.09.008

Bolsover SR. Calcium signalling in growth cone migration. Cell Calcium. 2005; 37(5): 395-402. DOI: https://doi.org/10.1016/j.ceca.2005.01.007

McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids. 2006; 75(4-5): 237-57. DOI: https://doi.org/10.1016/j.plefa.2006.07.009

Hundle B, McMahon T, Dadgar J, Messing RO. Overexpression of epsilon-protein kinase C enhances nerve growth factorinduced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. J Biol Chem. 1995; 270(50): 30134-40. DOI: https://doi.org/10.1074/jbc.270.50.30134

Vaughan PF, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol. 1998; 18(2): 125-55. DOI: https://doi.org/10.1007/BF02914269

Zimmer L, Hembert S, Durand G, Breton P, Guilloteau D, Besnard JC, et al. Chronic n-3 polyunsaturated fatty acid dietdeficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neurosci Lett. 1998; 240(3): 177-81. DOI: https://doi.org/10.1016/S0304-3940(97)00938-5

Kodas E, Galineau L, Bodard S, Vancassel S, Guilloteau D, Besnard JC, et al. Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J Neurochem. 2004; 89(3): 695-702. DOI: https://doi.org/10.1111/j.1471-4159.2004.02401.x

Aid S, Vancassel S, Poumes-Ballihaut C, Chalon S, Guesnet P, Lavialle M. Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J Lipid Res. 2003; 44(8): 1545-51. DOI: https://doi.org/10.1194/jlr.M300079-JLR200

Bhattacharyya S, Puri S, Miledi R, Panicker MM. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms. Proc Natl Acad Sci USA. 2002; 99(22): 14470-5. DOI: https://doi.org/10.1073/pnas.212517999

Ramamoorthy S, Giovanetti E, Qian Y, Blakely RD. Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem. 1998; 273(4): 2458-66. DOI: https://doi.org/10.1074/jbc.273.4.2458

Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem. 2003; 278(24): 22168-74. DOI: https://doi.org/10.1074/jbc.M301845200

Apparsundaram S, Schroeter S, Giovanetti E, Blakely RD. Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins. J Pharmacol Exp Ther. 1998; 287(2): 744-51. DOI: https://doi.org/10.1016/S0022-3565(24)37852-8

Kodas E, Vancassel S, Lejeune B, Guilloteau D, Chalon S. Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: critical role of developmental stage. J Lipid Res. 2002; 43(8): 1209-19. DOI: https://doi.org/10.1194/jlr.M200132-JLR200

Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A. 1986; 83(11): 4021-5. DOI: https://doi.org/10.1073/pnas.83.11.4021

Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem N Jr. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res. 2001; 42(3): 419-27. DOI: https://doi.org/10.1016/S0022-2275(20)31666-7

Demar JC, Martino C, Lefkowitz W, Salem N. Effect of dietary docosahexaenoic acid on the in vivo net biosynthesis of docosahexaenoic acid from a-linolenic acid, in rat tissues. Faseb Journal. 2007; 21(5): A239. DOI: https://doi.org/10.1096/fasebj.21.5.A239-d

Ikemoto A, Nitta A, Furukawa S, Ohishi M, Nakamura A, Fujii Y, et al. Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci Lett. 2000; 285(2): 99-102. DOI: https://doi.org/10.1016/S0304-3940(00)01035-1

Ahmad A, Moriguchi T, Salem N. Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol. 2002; 26(3): 210-8. DOI: https://doi.org/10.1016/S0887-8994(01)00383-6

Calderon F, Kim HY. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem. 2004; 90(4):979-88. DOI: https://doi.org/10.1111/j.1471-4159.2004.02520.x

Moriguchi T, Greiner RS, Salem N Jr. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem. 2000; 75(6): 2563-73. DOI: https://doi.org/10.1046/j.1471-4159.2000.0752563.x

Levant B, Zarcone TJ, Fowler SC. Developmental effects of dietary n-3 fatty acids on activity and response to novelty. Physiol Behav 2010; 101(1): 176-183. DOI: https://doi.org/10.1016/j.physbeh.2010.04.038

Greiner RS, Moriguchi T, Slotnick BM, Hutton A, Salem N. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol Behav. 2001; 72(3): 379-85. DOI: https://doi.org/10.1016/S0031-9384(00)00437-6

Carrie I, Clement M, de Javel D, Frances H, Bourre JM. Phospholipid supplementation reverses behavioral and biochemical alterations induced by n-3 polyunsaturated fatty acid deficiency in mice. J Lipid Res. 2000; 41(3): 473-80. DOI: https://doi.org/10.1016/S0022-2275(20)34486-2

Moriguchi T, Salem N Jr. Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem. 2003; 87(2): 297-309. DOI: https://doi.org/10.1046/j.1471-4159.2003.01966.x

Reisbick S, Neuringer M, Gohl E, Wald R, Anderson GJ. Visual attention in infant monkeys: effects of dietary fatty acids and age. Dev Psychol. 1997; 33(3): 387-95. DOI: https://doi.org/10.1037/0012-1649.33.3.387

Reisbick S, Neuringer M, Hasnain R, Connor WE. Polydipsia in rhesus monkeys deficient in omega-3 fatty acids. Physiol Behav.1990; 47(2): 315-23. DOI: https://doi.org/10.1016/0031-9384(90)90149-X

Reisbick S, Neuringer M, Hasnain R, Connor WE. Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol Behav. 1994; 55(2): 231-9. DOI: https://doi.org/10.1016/0031-9384(94)90128-7

Farquharson J, Cockburn F, Patrick WA, Jamieson EC, Logan RW. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet. 1992; 340(8823): 810-3. DOI: https://doi.org/10.1016/0140-6736(92)92684-8

Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA. 2000; 284(15): 1939-47. DOI: https://doi.org/10.1001/jama.284.15.1939

Stewart AL, Rifkin L, Amess PN, Kirkbride V, Townsend JP, Miller DH, et al. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet. 1999; 353(9165): 1653-7. DOI: https://doi.org/10.1016/S0140-6736(98)07130-X

Koletzko B, Larque E, Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med. 2007; 35 Suppl 1: S5-11. DOI: https://doi.org/10.1515/JPM.2007.030

Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007; 98(5): 873-7. DOI: https://doi.org/10.1017/S0007114507764747

Gil-Campos M, Dalmau Serra J. [Importance of docosahexaenoic acid (DHA): Functions and recommendations for its ingestion in infants]. An Pediatr (Barc). 2010; 73(3): 142 e141-8. DOI: https://doi.org/10.1016/j.anpedi.2010.03.019

Colombo J, Kannass KN, Shaddy DJ, Kundurthi S, Maikranz JM, Anderson CJ, et al. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004; 75(4): 1254-67. DOI: https://doi.org/10.1111/j.1467-8624.2004.00737.x

Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 2004; 15(4): 394-402. DOI: https://doi.org/10.1097/01.ede.0000129514.46451.ce

Fewtrell MS. Long-chain polyunsaturated fatty acids in early life: effects on multiple health outcomes. A critical review of current status, gaps and knowledge. Nestle Nutr Workshop Ser Pediatr Program. 2006; 57: 203-14; discussion 215-21. DOI: https://doi.org/10.1159/000091073

de Groot RH, Hornstra G, van Houwelingen AC, Roumen F. Effect of alpha-linolenic acid supplementation during pregnancy on maternal and neonatal polyunsaturated fatty acid status and pregnancy outcome. Am J Clin Nutr. 2004; 79(2): 251-60. DOI: https://doi.org/10.1093/ajcn/79.2.251

Francois CA, Connor SL, Bolewicz LC, Connor WE. Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. Am J Clin Nutr. 2003; 77(1): 226-33. DOI: https://doi.org/10.1093/ajcn/77.1.226

Ponder DL, Innis SM, Benson JD, Siegman JS. Docosahexaenoic acid status of term infants fed breast milk or infant formula containing soy oil or corn oil. Pediatr Res. 1992; 32(6): 683-8. DOI: https://doi.org/10.1203/00006450-199212000-00012

Ayerza R. The seed’s protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors. J Oleo Sci. 2009; 58(7): 347-54. DOI: https://doi.org/10.5650/jos.58.347

Rao S, Abdel-Reheem M, Bhella R, McCracken C, Hildebrand D. Characteristics of high alpha-linolenic acid accumulation in seed oils. Lipids. 2008; 43(8): 749-55. DOI: https://doi.org/10.1007/s11745-008-3207-0

Castro-González MI. Ácidos grasos ω 3: beneficios y fuentes. INCI. 2002; 27(3): 128-36.

Enos RT, Velazquez KT, McClellan JL, Cranford TL, Walla MD, Murphy EA. Reducing the Dietary Omega-6:Omega-3 Utilizing alpha-Linolenic Acid; Not a Sufficient Therapy for Attenuating High-Fat-Diet-Induced Obesity Development Nor Related Detrimental Metabolic and Adipose Tissue Inflammatory Outcomes. PLoS One. 2014; 9(4): e94897. DOI: https://doi.org/10.1371/journal.pone.0094897

Gupta A, Barrow CJ, Puri M. Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances. 2012; 30(6): 1733-45. DOI: https://doi.org/10.1016/j.biotechadv.2012.02.014

Mergler D, Anderson HA, Chan LH, Mahaffey KR, Murray M, Sakamoto M, et al. Methylmercury exposure and health effects in humans: a worldwide concern. Ambio. 2007; 36(1): 3-11. DOI: https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2

Domingo JL. Omega-3 fatty acids and the benefits of fish consumption: is all that glitters gold? Environ Int. 2007; 33(7): 993-8. DOI: https://doi.org/10.1016/j.envint.2007.05.001

Emder PJ, Jack MM. Iodine-induced neonatal hypothyroidism secondary to maternal seaweed consumption: A common practice in some Asian cultures to promote breast milk supply. J Paediatr Child Health. 2011; 47(10): 750-2. DOI: https://doi.org/10.1111/j.1440-1754.2010.01972.x

Chung HR, Shin CH, Yang SW, Choi CW, Kim BI. Subclinical Hypothyroidism in Korean Preterm Infants Associated with High Levels of Iodine in Breast Milk. J Clin Endocrinol Metab. 2009; 94(11): 4444-7. DOI: https://doi.org/10.1210/jc.2009-0632

Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003; 20(7-8): 491-515. DOI: https://doi.org/10.1016/S0734-9750(02)00050-2

Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol. 2005; 25(3): 73-95. DOI: https://doi.org/10.1080/07388550500248498

Henderson RJ, Leftley JW, Sargent JR. Lipid-Composition and Biosynthesis in the Marine Dinoflagellate Crypthecodinium-Cohnii. Phytochemistry. 1988; 27(6): 1679-83. DOI: https://doi.org/10.1016/0031-9422(88)80425-4

Meireles LA, Guedes AC, Malcata FX. Lipid class composition of the microalga Pavlova lutheri: Eicosapentaenoic and docosahexaenoic acids. Jour J Agric Food Chem. 2003; 51(8):2237-41. DOI: https://doi.org/10.1021/jf025952y

Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids. 2006; 41(8): 739-47. DOI: https://doi.org/10.1007/s11745-006-5025-6

Hinzpeter B, Schene IC, Masson L. Alternativas biotecnológicas para la producción de ácidos grasospoliinsaturados v-3. Grasas y Aceites. 2006; 57(3): 336-42. DOI: https://doi.org/10.3989/gya.2006.v57.i3.57

Iglesias-Rodriguez MD, Buitenhuis ET, Raven JA, Schofield O, Poulton AJ, Gibbs S, et al. Response to Comment on “Phytoplankton Calcification in a High-CO2 World”. Science. 2008; 322(5907). DOI: https://doi.org/10.1126/science.1161501

Wollenberger L, Breitholtz M, Ole Kusk K, Bengtsson BE. Inhibition of larval development of the marine copepod Acartia tonsa by four synthetic musk substances. Sci Total Environ. 2003; 305(1-3): 53-64. DOI: https://doi.org/10.1016/S0048-9697(02)00471-0

Goldstein S. Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Annu Rev Microbiol 1973; 27: 13-26. DOI: https://doi.org/10.1146/annurev.mi.27.100173.000305

Yang HL, Lu CK, Chen SF, Chen YM, Chen YM. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol. (NY) 2010; 12(2): 173-85. DOI: https://doi.org/10.1007/s10126-009-9207-0

Abril R, Garrett J, Zeller SG, Sander WJ, Mast RW. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part V: target animal safety/toxicity study in growing swine. Regul Toxicol Pharmacol. 2003; 37(1): 73-82. DOI: https://doi.org/10.1016/S0273-2300(02)00030-2

Hammond BG, Mayhew DA, Kier LD, Mast RW, Sander WJ. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Regul Toxicol Pharmacol. 2002; 35(2 Pt 1): 255-65. DOI: https://doi.org/10.1006/rtph.2002.1535

Morita E, Kumon Y, Nakahara T, Kagiwada S, Noguchi T. Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21. Mar Biotechnol (NY). 2006; 8(3): 319-27. DOI: https://doi.org/10.1007/s10126-005-5060-y

Sijtsma L, de Swaaf ME. Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol. 2004; 64(2): 146-53. DOI: https://doi.org/10.1007/s00253-003-1525-y

Nichols DS, Nichols PD, Mcmeekin TA. Polyunsaturated Fatty-Acids in Antarctic Bacteria. Antarctic Sci. 1993; 5(2): 149-60. DOI: https://doi.org/10.1017/S0954102093000215

Skerratt JH, Bowman JP, Nichols PD. Shewanella olleyana sp nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol. 2002; 52: 2101-6. DOI: https://doi.org/10.1099/00207713-52-6-2101

Yazawa K. Production of eicosapentaenoic acid from marine bacteria. Lipids. 1996; 31: S297-S300. DOI: https://doi.org/10.1007/BF02637095

Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, et al. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids. 2000; 35(10): 1061-4. DOI: https://doi.org/10.1007/s11745-000-0619-6

Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng. 1999; 87(1): 1-14. DOI: https://doi.org/10.1016/S1389-1723(99)80001-2

Jang HD, Lin YY, Yang SS. Polyunsaturated fatty acid production with Mortierella alpina by solid substrate fermentation. Bot Bull Acad Sin. 2000; 41(1): 41-8.

Williams CM, Burdge G. Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc. 2006; 65(1): 42-50. DOI: https://doi.org/10.1079/PNS2005473

Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TAB, Allen NE, Key TJ. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr. 2005; 82(2): 327-34. DOI: https://doi.org/10.1093/ajcn/82.2.327

Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002; 102(11): 1621-1630. DOI: https://doi.org/10.1016/S0002-8223(02)90346-9

Simopoulos AP, Leaf A, Salem N Jr. Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann Nutr Metab. 1999; 43(2): 127-130. DOI: https://doi.org/10.1159/000012777

Conquer JA, Holub BJ. Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects. J Nutr. 1996; 126(12): 3032-3039. DOI: https://doi.org/10.1093/jn/126.12.3032

Sanders TA, Gleason K, Griffin B, Miller GJ. Influence of an algal triacylglycerol containing docosahexaenoic acid (22:6n-3) and docosapentaenoic acid (22 : 5n-6) on cardiovascular risk factors in healthy men and women. Br J Nutr. 2006; 95(3): 525-531. DOI: https://doi.org/10.1079/BJN20051658

Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004; 24: 597-615. DOI: https://doi.org/10.1146/annurev.nutr.24.012003.132106

Published

2014-04-28

How to Cite

Molina-Peralta, Ángeles, & Mach, N. (2014). Omega-3 fatty acids rich foods free from contaminants and suitable for vegetarians, and its significance in the normal neurological development. Spanish Journal of Human Nutrition and Dietetics, 18(2), 89–99. https://doi.org/10.14306/renhyd.18.2.26