Redefinición de los subproductos de algarroba como ingredientes funcionales para los alimentos del futuro
DOI:
https://doi.org/10.14306/renhyd.29.2.2450Palabras clave:
Ceratonia siliqua L, fracciones, revalorización, sostenibilidad, innovaciónResumen
Durante décadas, el algarrobo (Ceratonia siliqua L.) ha sido un pilar en los países mediterráneos, utilizado tradicionalmente como alimento para el ganado. Sin embargo, investigaciones emergentes destacan su notable potencial nutricional y funcional, posicionando los subproductos del algarrobo como ingredientes valiosos para la próxima generación de alimentos funcionales. Esta revisión integral analiza el perfil nutricional, la composición fitoquímica y las propiedades beneficiosas para la salud de los derivados del algarrobo, con el objetivo de aprovechar plenamente su potencial en la innovación alimentaria. Los subproductos del algarrobo son naturalmente ricos en fibra insoluble y compuestos bioactivos, como fenoles, inositoles y vitaminas esenciales. Además, numerosos estudios in vitro han confirmado sus propiedades antioxidantes, antibacterianas, anticancerígenas y antiinflamatorias, lo que los convierte en candidatos prometedores para el desarrollo de alimentos con beneficios mejorados para la salud. Más allá de sus atributos nutricionales y funcionales, la revalorización de los subproductos del algarrobo se alinea con los objetivos de sostenibilidad, al optimizar los recursos agrícolas, reducir el desperdicio alimentario y promover los principios de la economía circular. En un contexto donde la industria alimentaria busca soluciones innovadoras, la algarroba se perfila como un ingrediente versátil con potencial para dar forma al futuro de los alimentos funcionales. La investigación continuada impulsará la innovación y reforzará su papel en los sistemas alimentarios ecológicos y beneficiosos para la salud.
Citas
(1) Biernacka B, Dziki D, Gawlik-Dziki U, Różyło R, Siastała M Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT. 2017;77:186-92, doi: 10.1016/j.lwt.2016.11.042.
(2) Lupu MI, Canja CM, Padureanu V, Boieriu A, Maier A, Badarau C, et al. Insights on the Potential of Carob Powder (Ceratonia siliqua L.) to Improve the Physico-Chemical, Biochemical and Nutritional Properties of Wheat Durum Pasta. Applied Sciences (Switzerland). 2023;13(6), doi: 10.3390/app13063788.
(3) Djebari S, Wrona M, Nerín C, Djaoudene O, Guemouni S, Boudria A, et al. Phenolic compounds profile of macerates of different edible parts of carob tree (Ceratonia siliqua L.) using UPLC-ESI-Q-TOF-MSE: Phytochemical screening and biological activities. Fitoterapia. 2024;172, doi: 10.1016/j.fitote.2023.105696.
(4) Zouari N, El Mtili N In Vitro Propagation of Mature Carob Trees (Ceratonia siliqua L.) from the Axillary Buds. Am J Plant Sci. 2020;11(09):1369-82, doi: 10.4236/ajps.2020.119098.
(5) Gioxari A, Amerikanou C, Nestoridi I, Gourgari E, Pratsinis H, Kalogeropoulos N, et al. Carob: A Sustainable Opportunity for Metabolic Health. Foods. 2022, doi: 10.3390/foods11142154.
(6) Naciones Unidas La Agenda para el Desarrollo Sostenible.
(7) FAOSTAT Statistical Database of Food and Agriculture Organization of the United Nations. [accedido 24 marzo 2025].
(8) Moher D, Liberati A, Tetzlaff J, Altman DG, Grupo PRISMA Ítems de referencia para publicar Revisiones Sistemáticas y Metaanálisis: La Declaración PRISMA. Rev Esp Nutr Hum Diet. 2014;18(3):172-81.
(9) Mahtout R, Ortiz-Martínez VM, Salar-García MJ, Gracia I, Hernández-Fernández FJ, Ríos AP, et al. Algerian carob tree products: A comprehensive valorization analysis and future prospects. Sustainability (Switzerland). 2018;10(1), doi: 10.3390/su10010090.
(10) Papaefstathiou E, Agapiou A, Giannopoulos S, Kokkinofta R Nutritional characterization of carobs and traditional carob products. Food Sci Nutr. 2018;6(8):2151-61, doi: 10.1002/fsn3.776.
(11) Fadel F, El Mehrach K, Chebli B, Fahmi F, El Hafa M, Amri O, et al. Morphometric and physicochemical characteristics of carob pods in three geographical regions of Morocco. SN Appl Sci. 2020;2(12), doi: 10.1007/s42452-020-03963-w.
(12) Kyratzis AC, Antoniou C, Papayiannis LC, Graziani G, Rouphael Y, Kyriacou MC Pod Morphology, Primary and Secondary Metabolite Profiles in Non-grafted and Grafted Carob Germplasm Are Configured by Agro-Environmental Zone, Genotype, and Growing Season. Front Plant Sci. 2021;11, doi: 10.3389/fpls.2020.612376.
(13) Khelouf I, Jabri Karoui I, Abderrabba M Chemical composition, in vitro antioxidant and antimicrobial activities of carob pulp (Ceratonia siliqua L.) from Tunisia. Chemical Papers. 2023;77(10):6125-34, doi: 10.1007/s11696-023-02926-w.
(14) Ku MC-Y, Liu S-Q Unveiling the cocoa-carob flavour gap in dark chocolates via instrumental and descriptive sensory analyses. Food Research International. 2024;195, doi: 10.1016/j.foodres.2024.114992.
(15) Boutasknit A, Baslam M, Ait-El-mokhtar M, Anli M, Ben-Laouane R, Douira A, et al. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua l.) ecotypes by regulating stomatal, water relations, and (in)organic adjustments. Plants. 2020;9(1), doi: 10.3390/plants9010080.
(16) Sánchez-Hidalgo M, León-González AJ, Gálvez-Peralta M, González-Mauraza NH, Martin-Cordero C d-Pinitol: a cyclitol with versatile biological and pharmacological activities. Phytochemistry Reviews. 2021:211-24, doi: 10.1007/s11101-020-09677-6.
(17) Rodríguez-Solana R, Romano A, Moreno-Rojas JM Carob pulp: A nutritional and functional by-product worldwide spread in the formulation of different food products and beverages. a review. Processes. 2021, doi: 10.3390/pr9071146.
(18) Korkmaz N, Akin M, Koc A, Eyduran SP, Ilhan G, Sagbas HI, et al. Morphological and biochemical diversity among wild-grown carob trees (Ceratonia siliqua L.). Folia Horticulturae. 2020;32(1):69-78, doi: 10.2478/fhort-2020-0007.
(19) Richane A, Ismail HB, Darej C, Attia K, Moujahed N Potential of Tunisian carob pulp as feed for ruminants: chemical composition and in vitro assessment. Trop Anim Health Prod. 2022;54(1), doi: 10.1007/s11250-022-03071-4.
(20) Hanoğlu A, Karaoğlu MM, Bedir Y The effect of carob, orange and carrot pulps on physical, chemical and microbiological properties of Turkish delight. Int J Gastron Food Sci. 2023;32, doi: 10.1016/j.ijgfs.2023.100709.
(21) Mamone G, Sciammaro L, De Caro S, Di Stasio L, Siano F, Picariello G, et al. Comparative analysis of protein composition and digestibility of Ceratonia siliqua L. and Prosopis spp. seed germ flour. Food Research International. 2019;120:188-95, doi: 10.1016/j.foodres.2019.02.035.
(22) Taghvaei M, Smith B, Yazar G, Bean S, Tilley M, Ioerger B Identification of gluten-like proteins in selected pod bearing leguminous tree seeds. PLoS One. 2021;16(4 April), doi: 10.1371/journal.pone.0249427.
(23) Yazar G, Kokini JL, Smith B Comparison of mixing and non-linear viscoelastic properties of carob germ glutelins and wheat glutenin. Food Hydrocoll. 2023;143, doi: 10.1016/j.foodhyd.2023.108922.
(24) Boutasknit A, Ait-El-Mokhtar M, Fassih B, Ben-Laouane R, Wahbi S, Meddich A Effect of Arbuscular Mycorrhizal Fungi and Rock Phosphate on Growth, Physiology, and Biochemistry of Carob under Water Stress and after Rehydration in Vermicompost-Amended Soil. Metabolites. 2024;14(4), doi: 10.3390/metabo14040202.
(25) Tsatsaragkou K, Mandala I, Stoforos NG Fermentation Kinetics of Gluten-Free Breads: The Effect of Carob Fraction and Water Content. Foods. 2023;12(9), doi: 10.3390/foods12091809.
(26) Filipini G, Passos AP, Fernandes SS, Salas-Mellado M de las M Nutritional value, technological and sensory evaluation of gluten-free bread enriched with soybean flour and coconut oil. Journal of Food Measurement and Characterization. 2021;15(4):3853-61, doi: 10.1007/s11694-021-00971-1.
(27) Grasso N, Alonso-Miravalles L, O’Mahony JA Composition, physicochemical and sensorial properties of commercial plant-based yogurts. Foods. 2020;9(3), doi: 10.3390/foods9030252.
(28) Siano F, Sciammaro L, Volpe MG, Mamone G, Puppo MC, Picariello G Integrated Analytical Methods to Characterize Lipids from Prosopis spp. and Ceratonia siliqua Seed Germ Flour. Food Anal Methods. 2018;11(12):3471-80, doi: 10.1007/s12161-018-1323-x.
(29) Amar YMB, Potortì AG, Albergamo A, Litrenta F, Rando R, Mouad LB, et al. Study of the lipid fraction of Moroccan and Italian carobs (Ceratonia siliqua L.). European Journal of Lipid Science and Technology. 2024, doi: 10.1002/ejlt.202400036.
(30) Fidan H, Stankov S, Petkova N, Petkova Z, Iliev A, Stoyanova M, et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J Food Sci Technol. 2020;57(7):2404-13, doi: 10.1007/s13197-020-04274-z.
(31) Yatim M, El-Askri T, Sehli Y, Amechrouq A, El Yaacoubi A, Ainane T, et al. Morphological and chemical characterization of carob pulps collected from four moroccan regions. Moroccan Journal of Chemistry. 2022;10(4):787-99, doi: 10.48317/IMIST.PRSM/morjchem-v10i4.34416.
(32) Oumlouki KE, Salih G, Jilal A, Dakak H, Amrani ME, Zouahrt A Comparative study of the mineral composition of carob pulp (Ceratonia siliqua L.) from various regions in Morocco. Moroccan Journal of Chemistry. 2021;9(4):741-53, doi: 10.48317/IMIST.PRSM/morjchem-v9i3.21872.
(33) Capcanari T, Covaliov E, Chirsanova A, Popovici V, Radu O, Siminiuc R Bioactive profile of carob (Ceratonia siliqua L.) cultivated in European and North Africa agrifood sectors. Ukrainian Food Journal. 2023;12(2):227-39, doi: 10.24263/2304-974X-2023-12-2-6.
(34) Laaraj S, Hussain A, Mouhaddach A, Noutfia Y, Gorsi FI, Yaqub S, et al. Nutritional Benefits and Antihyperglycemic Potential of Carob Fruit (Ceratonia siliqua L.): An Overview. Ecological Engineering and Environmental Technology. 2024;25(3):124-32, doi: 10.12912/27197050/178456.
(35) Cegledi E, Dobroslavić E, Zorić Z, Repajić M, Elez Garofulić I Antioxidant Activity of Carob Tree (Ceratonia siliqua L.) Leaf Extracts Obtained by Advanced Extraction Techniques. Processes. 2024;12(4), doi: 10.3390/pr12040658.
(36) Yatim M, Kahkahi R El, Sbata IE-, Askri TE-, ElOirdi S, Lakhlifi T, et al. Effects of Pre-sowing Treatments and Abiotic Stress on the Germination of Ceratonia siliqua Seeds of Four Moroccan Biomes. Annu Res Rev Biol. 2020:11-31, doi: 10.9734/arrb/2020/v35i1230307.
(37) Rico D, Martín-Diana AB, Martínez-Villaluenga C, Aguirre L, Silván JM, Dueñas M, et al. In vitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon. 2019;5(1), doi: 10.1016/j.heliyon.2019.e01175.
(38) Vilas-Boas AM, Brassesco ME, Quintino AC, Vieira MC, Brandão TRS, Silva CLM, et al. Particle Size Effect of Integral Carob Flour on Bioaccessibility of Bioactive Compounds during Simulated Gastrointestinal Digestion. Foods. 2022;11(9), doi: 10.3390/foods11091272.
(39) OZDEMİR Y, ONCEL B, KECELİ M Purification of crude fiber from carob molasses pulp and uses in traditional Turkish sucuk. Int J Gastron Food Sci. 2021;25, doi: 10.1016/j.ijgfs.2021.100410.
(40) Kaya SY, Ilhan S, Paksoy ÖI Enhancement of semolina pasta with carob molasses pulp. Czech Journal of Food Sciences. 2024;42(2):109-17, doi: 10.17221/152/2023-CJFS.
(41) Correia PJ, Saavedra T, Gama F, da Graça Miguel M, de Varennes A, Pestana M Biologically active compounds available in Ceratonia siliqua L. grown in contrasting soils under Mediterranean climate. Sci Hortic. 2018;235:228-34, doi: 10.1016/j.scienta.2018.03.010.
(42) Richane A, Rim BM, wided M, Riadh K, Khaoula A, Nizar M, et al. Variability of phenolic compounds and antioxidant activities of ten Ceratonia siliqua L. provenances. Biochem Syst Ecol. 2022;104, doi: 10.1016/j.bse.2022.104486.
(43) Christou A, Stavrou IJ, Kapnissi-Christodoulou CP Combined use of β-cyclodextrin and ionic liquid as electrolyte additives in EKC for separation and determination of carob’s phenolics—A study of the synergistic effect. Electrophoresis. 2021;42(19):1945-55, doi: 10.1002/elps.202100085.
(44) El Sayed NS, Abidar S, Nhiri M, Hritcu L, Ibrahim WW Aqueous extract of Ceratonia siliqua L. leaves elicits antioxidant, anti-inflammatory, and AChE inhibiting effects in amyloid-β42-induced cognitive deficit mice: Role of α7-nAChR in modulating Jak2/PI3K/Akt/GSK-3β/β-catenin cascade. Phytotherapy Research. 2023;37(6):2437-53, doi: 10.1002/ptr.7766.
(45) Elbouzidi A, Taibi M, Ouassou H, Ouahhoud S, Ou-Yahia D, Loukili EH, et al. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals. 2023;16(6), doi: 10.3390/ph16060840.
(46) Spizzirri UG, Abduvakhidov A, Caputo P, Crupi P, Muraglia M, Rossi CO, et al. Kefir Enriched with Carob (Ceratonia siliqua L.) Leaves Extract as a New Ingredient during a Gluten-Free Bread-Making Process. Fermentation. 2022;8(7), doi: 10.3390/fermentation8070305.
(47) Benito-Vázquez I, Garrido-Romero M, Hontoria-Caballo G, García-García C, Díez-Municio M, Moreno FJ Carob (Ceratonia siliqua) Flour as Source of Bioactive Compounds: Production, Characterization and Nutraceutical Value. Foods. 2024;13(19), doi: 10.3390/foods13193024.
(48) Saci F, Bachir bey M, Louaileche H, Gali L, Bensouici C Changes in anticholinesterase, antioxidant activities and related bioactive compounds of carob pulp (Ceratonia siliqua L.) during ripening stages. Journal of Food Measurement and Characterization. 2020;14(2):937-45, doi: 10.1007/s11694-019-00344-9.
(49) El-Haddad AE, Gendy AM, Amin MM, ALshareef WA, El Gizawy HA Comparative characterization of carob pulp and seeds extracts: HPLC, antimicrobial, anti-inflammatory, and cytotoxic studies. Egypt J Chem. 2022;65(10):279-84, doi: 10.21608/EJCHEM.2022.116534.5265.
(50) Siano F, Mamone G, Vasca E, Puppo MC, Picariello G Pasta fortified with C-glycosides-rich carob (Ceratonia siliqua L.) seed germ flour: Inhibitory activity against carbohydrate digesting enzymes. Food Research International. 2023;170, doi: 10.1016/j.foodres.2023.112962.
(51) Zahorec J, Šoronja-Simović D, Kocić-Tanackov S, Bulut S, Martić N, Bijelić K, et al. Carob Pulp Flour Extract Obtained by a Microwave-Assisted Extraction Technique: A Prospective Antioxidant and Antimicrobial Agent. Separations. 2023;10(9), doi: 10.3390/separations10090465.
(52) Venianakis T, Parisis N, Christou A, Goulas V, Nikoloudakis N, Botsaris G, et al. Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques. Molecules. 2024;29(22), doi: 10.3390/molecules29225273.
(53) Christou A, Stavrou IJ, Kapnissi-Christodoulou CP Continuous and pulsed ultrasound-assisted extraction of carob’s antioxidants: Processing parameters optimization and identification of polyphenolic composition. Ultrason Sonochem. 2021;76, doi: 10.1016/j.ultsonch.2021.105630.
(54) Gregoriou G, Neophytou CM, Vasincu A, Gregoriou Y, Hadjipakkou H, Pinakoulaki E, et al. Anti-cancer activity and phenolic content of extracts derived from cypriot carob (Ceratonia siliqua L.) pods using different solvents. Molecules. 2021;26(16), doi: 10.3390/molecules26165017.
(55) Ioannou GD, Savva IK, Christou A, Stavrou IJ, Kapnissi-Christodoulou CP Phenolic Profile, Antioxidant Activity, and Chemometric Classification of Carob Pulp and Products. Molecules. 2023;28(5), doi: 10.3390/molecules28052269.
(56) Ben Othmen K, Elfalleh W, Lachiheb B, Haddad M Evolution of phytochemical and antioxidant activity of Tunisian carob (Ceratonia siliqua L.) pods during maturation. Eurobiotech Journal. 2019;3(3):135-42, doi: 10.2478/ebtj-2019-0016.
(57) Kayel I, Essghaier B, Benabderrahim MA, Rodríguez-Arcos R, Jiménez-Araujo A, Guillén-Bejarano R, et al. Three Mediterranean species from natural plant communities (Ceratonia siliqua, Pistacia lentiscus, and Olea europaea var. sylvestris): phenolic acids, flavonoids, and biological activities. South African Journal of Botany. 2024;175:620-7, doi: 10.1016/j.sajb.2024.10.056.
(58) Ben Ayache S, Behija Saafi E, Emhemmed F, Flamini G, Achour L, Muller CD Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation. Molecules. 2020;25(14), doi: 10.3390/molecules25143120.
(59) Ben Othmen K, Elfalleh W, García Beltrán JM, Esteban MÁ, Haddad M An in vitro study of the effect of carob (Ceratonia siliqua L.) leaf extracts on gilthead seabream (Sparus aurata L.) leucocyte activities. Antioxidant, cytotoxic and bactericidal properties. Fish Shellfish Immunol. 2020;99:35-43, doi: 10.1016/j.fsi.2020.02.005.
(60) Moubtakir S, Terrafe C, Laaradia MA, Badaoui M, Oubella K, Agouram FZ, et al. Antioxidant, anti-inflammatory and antiulcer effects of Moroccan Ceratonia siliqua pulp in animal models. Tropical Journal of Pharmaceutical Research. 2024;23(5):847-53, doi: 10.4314/tjpr.v23i5.6.
(61) Darwish WS, Khadr AE, Kamel MA, Abd Eldaim MA, El Sayed IE, Abdel-Bary HM, et al. Phytochemical Characterization and Evaluation of Biological Activities of Egyptian Carob Pods (Ceratonia siliqua L.) Aqueous Extract: In Vitro Study. PLANTS-BASEL. 2021;10(12), doi: 10.3390/plants10122626.
(62) Christou A, Stavrou K, Michael C, Botsaris G, Goulas V Evaluation of Mediterranean Tree Leaves as Valuable Biomass of Digestive Enzymes and Bacterial Inhibitors in the Concept of Circular Bioeconomy. Biomass (Switzerland). 2024;4(2):442-54, doi: 10.3390/biomass4020022.
(63) Deans BJ, Skierka BE, Karagiannakis BW, Vuong D, Lacey E, Smith JA, et al. Siliquapyranone: A Tannic Acid Tetrahydropyran-2-one Isolated from the Leaves of Carob (Ceratonia siliqua) by Pressurised Hot Water Extraction. Aust J Chem. 2018;71(9):702-7, doi: 10.1071/CH18265.
(64) de Falco B, Grauso L, Fiore A, Bonanomi G, Lanzotti V Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. Phytochemical Analysis. 2022;33(5):696-709, doi: 10.1002/pca.3121.
(65) Hussein WA, Salem AA, Fahmy HA, Mouneir SM, Soliman AS, Abbas MS Effect of Carob, Doum, and Cinnamon Powder on Blood Lipid Profile in Diabetic Rats. Egypt J Chem. 2022;65(9):317-28, doi: 10.21608/EJCHEM.2022.114446.5202.
(66) Martínez-Villaluenga C, Peñas E, Rico D, Martin-Diana AB, Portillo MP, Macarulla MT, et al. Potential usefulness of a wakame/carob functional snack for the treatment of several aspects of metabolic syndrome: From in vitro to in vivo studies. Mar Drugs. 2018;16(12), doi: 10.3390/md16120512.
(67) Fujita K, Norikura T, Matsui-Yuasa I, Kumazawa S, Honda S, Sonoda T, et al. Carob pod polyphenols suppress the differentiation of adipocytes through posttranscriptional regulation of C/EBPβ. PLoS One. 2021;16(3 March), doi: 10.1371/journal.pone.0248073.
(68) Chaalal M, Ydjedd S, Chemache L, López-Nicolás R, Sánchez-Moya T, Frontela-Saseta C, et al. Evaluation of the antimicrobial potential of digested and undigested carob phenolic extracts: Impact on selected gut microbiota. Acta Aliment. 2023;52(4), doi: 10.1556/066.2023.00172.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Noelia Castillejo, Héctor Gomez, Susana Ribes, José M Barat, Édgar Pérez-Esteve

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.