Efectos del té verde sobre el riesgo de cáncer de mama

Autores/as

  • Carlos Pardos-Sevilla Àrea de Ciències de la Salut, Institut Internacional de Postgrau de la Universitat Oberta de Catalunya (UOC), 08035, Barcelona
  • Núria Mach Àrea de Ciències de la Salut, Institut Internacional de Postgrau de la Universitat Oberta de Catalunya (UOC), 08035, Barcelona INRA, Animal Genetics and Integrative Biology lab - GABI department, Jouy-en-Josas

DOI:

https://doi.org/10.14306/renhyd.18.1.27

Palabras clave:

Té, Neoplasia de mama, Transcriptómica, Epigenómica

Resumen

Los componentes fitoquímicos como las catequinas del té verde pueden modificar el epigenoma y transcriptoma de las células tumorales. El objetivo del presente estudio es hacer un análisis retrospectivo de lo que se ha publicado hasta la actualidad sobre los mecanismos mediante los cuales el consumo de té verde podría tener un efecto protector en el riesgo de cáncer de mama. En este trabajo, se analizan más de 100 artículos publicados en los últimos 15 años que relacionan el consumo de té verde y la prevalencia y desarrollo del cáncer de mama. Los polifenoles del té verde pueden reducir el riesgo de cáncer de mama mediante la inhibición estrogénica y quimiotóxica en hígado, estimulando la ruta metabólica de conjugación con glutatión, mejorando el síndrome metabólico, además de la regulación del sistema inmune y estrés oxidativo y la inhibición de la metilación del ADN. Pese a que los estudios in vitro y en modelos animales muestran la capacidad potencial de los polifenoles del té verde para actuar frente al riesgo de padecer cáncer de mama, la falta de más estudios clínicos en humanos, impide actualmente poder realizar recomendaciones dietéticas con certitud en pacientes con cáncer de mama.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2): 69-90. DOI: https://doi.org/10.3322/caac.20107

López-Abente G, Pollán M, Aragonés N, Pérez Gómez B, Hernández Barrera V, Lope V, et al. [State of cancer in Spain: incidence]. An Sist Sanit Navar. 2004; 27(2): 165-73. DOI: https://doi.org/10.4321/S1137-66272004000300001

Abdulrahman GO Jr, Rahman GA. Epidemiology of breast cancer in europe and Africa. J Cancer Epidemiol. 2012; 2012: 915610. DOI: https://doi.org/10.1155/2012/915610

Zygogianni AG, Kyrgias G, Gennatas C, Ilknur A, Armonis V, Tolia M, et al. Male breast carcinoma: epidemiology, risk factors and current therapeutic approaches. Asian Pac J Cancer Prev. 2012; 13(1): 15-9. DOI: https://doi.org/10.7314/APJCP.2012.13.1.015

Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet. 2002; 360(9328): 187-95. DOI: https://doi.org/10.1016/S0140-6736(02)09454-0

Yoshimoto N, Nishiyama T, Toyama T, Takahashi S, Shiraki N, Sugiura H, et al. Genetic and environmental predictors, endogenous hormones and growth factors, and risk of estrogen receptor-positive breast cancer in Japanese women. Cancer Sci. 2011; 102(11): 2065-72. DOI: https://doi.org/10.1111/j.1349-7006.2011.02047.x

Reeves GK, Pirie K, Green J, Bull D, Beral V, Million Women Study Collaborators. Comparison of the effects of genetic and environmental risk factors on in situ and invasive ductal breast cancer. Int J Cancer. 2012; 131(4): 930-7. DOI: https://doi.org/10.1002/ijc.26460

Fénichel P, Brucker-Davis F. [Environmental endocrine disruptors and breast cancer: new risk factors?]. Gynecol Obstet Fertil. 2008; 36(10): 969-77. DOI: https://doi.org/10.1016/j.gyobfe.2008.05.006

Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: Update 2012. Alcohol Alcohol. 2012; 47(3): 204-12. DOI: https://doi.org/10.1093/alcalc/ags011

Villarini A, Pasanisi P, Traina A, Mano MP, Bonanni B, Panico S, et al. Lifestyle and breast cancer recurrences: the DIANA-5 trial. Tumori. 2012; 98(1): 1-18. DOI: https://doi.org/10.1177/030089161209800101

Pal D, Banerjee S, Ghosh AK. Dietary-induced cancer prevention: An expanding research arena of emerging diet related to healthcare system. J Adv Pharm Technol Res. 2012; 3(1): 16-24. DOI: https://doi.org/10.4103/2231-4040.93561

del Valle J, Feliubadaló L, Nadal M, Teulé A, Miró R, Cuesta R, et al. Identification and comprehensive characterization of large genomic rearrangements in the BRCA1 and BRCA2 genes. Breast Cancer Res Treat. 2010; 122(3): 733-43. DOI: https://doi.org/10.1007/s10549-009-0613-9

Mazoyer S. Genomic rearrangements in the BRCA1 and BRCA2 genes. Hum Mutat. 2005; 25(5): 415-22. DOI: https://doi.org/10.1002/humu.20169

Radpour R, Barekati Z, Kohler C, Schumacher MM, Grussenmeyer T, Jenoe P, et al. Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment. PLoS One. 2011; 6(11): e27355. DOI: https://doi.org/10.1371/journal.pone.0027355

Jovanovic J, Rønneberg JA, Tost J, Kristensen V. The epigenetics of breast cancer. Mol Oncol. 2010; 4(3): 242-54. DOI: https://doi.org/10.1016/j.molonc.2010.04.002

Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia. 2010; 15(1): 5-17. DOI: https://doi.org/10.1007/s10911-010-9165-1

Hinshelwood RA, Clark SJ. Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med (Berl). 2008; 86(12): 1315-28. DOI: https://doi.org/10.1007/s00109-008-0386-3

Burkadze G, Avaliani Z, Kureli I, Turashvili G, Gudadze M. Detection of maspin and mammaglobin transcripts as circulating tumor cell markers in peripheral blood samples from breast cancer patients. Virchows Arch. 2011; 459: S66.

Ferreira EN, Rangel MC, Galante PF, de Souza JE, Molina GC, de Souza SJ, et al. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts. BMC Genomics. 2010; 11 Suppl 5: S4. DOI: https://doi.org/10.1186/1471-2164-11-S5-S4

Jaberipour M, Habibagahi M, Hosseini A, Habibabad SR, Talei A, Ghaderi A. Increased CTLA-4 and FOXP3 transcripts in peripheral blood mononuclear cells of patients with breast cancer. Pathol Oncol Res. 2010; 16(4): 547-51. DOI: https://doi.org/10.1007/s12253-010-9256-8

Jaberipour M, Habibagahi M, Hosseini A, Abbasi M, Sobhani-Lari A, Talei A, et al. Detection of B cell lymphoma 2, tumor protein 53, and FAS gene transcripts in blood cells of patients with breast cancer. Indian J Cancer. 2010; 47(4): 412-7. DOI: https://doi.org/10.4103/0019-509X.73576

Bitisik O, Saip P, Saglam S, Derin D, Dalay N. Mammaglobin and maspin transcripts in blood may reflect disease progression and the effect of therapy in breast cancer. Genet Mol Res. 2010; 9(1): 97-106. DOI: https://doi.org/10.4238/vol9-1gmr649

Lower EE, Glass EL, Bradley DA, Blau R, Heffelfinger S. Impact of metastatic estrogen receptor and progesterone receptor status on survival. Breast Cancer Res Treat. 2005; 90(1): 65-70. DOI: https://doi.org/10.1007/s10549-004-2756-z

Bast RC Jr, Ravdin P, Hayes DF, Bates S, Fritsche H Jr, Jessup JM, et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001; 19(6): 1865-78. DOI: https://doi.org/10.1200/JCO.2001.19.6.1865

Hanaoka M, Takano T, Kawabata H. Exemestane for breastcancer prevention. N Engl J Med. 2011; 365(11): 1056-7.

Goss PE, Richardson H. Exemestane for Breast-Cancer Prevention REPLY. N Engl J Med. 2011; 365(11): 1057-8. DOI: https://doi.org/10.1056/NEJMc1108287

Riscuta G, Dumitrescu RG. Nutrigenomics: implications for breast and colon cancer prevention. Methods Mol Biol. 2012; 863: 343-58. DOI: https://doi.org/10.1007/978-1-61779-612-8_22

Yang CS, Lambert JD, Sang S. Antioxidative and anticarcinogenic activities of tea polyphenols. Arch Toxicol. 2009; 83(1): 11-21. DOI: https://doi.org/10.1007/s00204-008-0372-0

Lambert JD, Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res. 2003; 523-524: 201-8. DOI: https://doi.org/10.1016/S0027-5107(02)00336-6

Chang YC, Chen PN, Chu SC, Lin CY, Kuo WH, Hsieh YS. Black Tea Polyphenols Reverse Epithelial-to-Mesenchymal Transition and Suppress Cancer Invasion and Proteases in Human Oral Cancer Cells. J Agric Food Chem. 2012; 60(34): 8395-403. DOI: https://doi.org/10.1021/jf302223g

Li W, Mei X, Tu YY. Effects of tea polyphenols and their polymers on MAPK signaling pathways in cancer research. Mini Rev Med Chem. 2012; 12(2): 120-6. DOI: https://doi.org/10.2174/138955712798995011

Thakur VS, Gupta K, Gupta S. Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis. 2012; 33(2): 377-84. DOI: https://doi.org/10.1093/carcin/bgr277

Hessien M, El-Gendy S, Donia T, Sikkena MA. Growth inhibition of human non-small lung cancer cells h460 by green tea and ginger polyphenols. Anticancer Agents Med Chem. 2012; 12(4): 383-90. DOI: https://doi.org/10.2174/187152012800228698

Singh M, Singh R, Bhui K, Tyagi S, Mahmood Z, Shukla Y. Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-kappaB and Akt activation in human cervical cancer cells. Oncol Res. 2011; 19(6): 245-57. DOI: https://doi.org/10.3727/096504011X13021877989711

Forester SC, Lambert JD. The role of antioxidant versus prooxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res. 2011; 55(6): 844-54. DOI: https://doi.org/10.1002/mnfr.201000641

Singh M, Bhatnagar P, Srivastava AK, Kumar P, Shukla Y, Gupta KC. Enhancement of cancer chemosensitization potential of cisplatin by tea polyphenols poly(lactide-coglycolide) nanoparticles. J Biomed Nanotechnol. 2011; 7(1): 202. DOI: https://doi.org/10.1166/jbn.2011.1268

Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem. 2011; 53: 155-77. DOI: https://doi.org/10.1016/B978-0-12-385855-9.00007-2

Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010; 501(1): 65-72. DOI: https://doi.org/10.1016/j.abb.2010.06.013

Suzuki Y, Miyoshi N, Isemura M. Health-promoting effects of green tea. Proc Jpn Acad Ser B Phys Biol Sci. 2012; 88(3): 88-101. DOI: https://doi.org/10.2183/pjab.88.88

Suganuma M, Sueoka E, Sueoka N, Okabe S, Fujiki H. Mechanisms of cancer prevention by tea polyphenols based on inhibition of TNF-alpha expression. Biofactors. 2000; 13(1-4): 67-72. DOI: https://doi.org/10.1002/biof.5520130112

Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, et al. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A. 2006; 103(4): 1024-9. DOI: https://doi.org/10.1073/pnas.0510168103

Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacol Rep. 2009; 61(1): 67-75. DOI: https://doi.org/10.1016/S1734-1140(09)70008-8

Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998; 56(11): 317-33. DOI: https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005; 81(1 Suppl): 243S-55S. DOI: https://doi.org/10.1093/ajcn/81.1.243S

Barbosa KB, Bressan J, Zulet MA, Martínez Hernández JA. [Influence of dietary intake on plasma biomarkers of oxidative stress in humans]. An Sist Sanit Navar. 2008; 31(3): 259-80.

Landete JM. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr. 2012; 52(10): 936-48. DOI: https://doi.org/10.1080/10408398.2010.513779

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79(5): 727-47. DOI: https://doi.org/10.1093/ajcn/79.5.727

Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000; 130(8S Suppl): 2073S-85S. DOI: https://doi.org/10.1093/jn/130.8.2073S

Scheepens A, Tan K, Paxton JW. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr. 2010; 5(1): 75-87. DOI: https://doi.org/10.1007/s12263-009-0148-z

Scholz S, Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res. 2007; 77(3): 224-35. DOI: https://doi.org/10.1024/0300-9831.77.3.224

Quiñones M, Miguel M, Aleixandre A. [The polyphenols, naturally occurring compounds with beneficial effects on cardiovascular disease]. Nutr Hosp. 2012; 27(1): 76-89.

Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, et al. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr. 2003; 133(3): 700-6. DOI: https://doi.org/10.1093/jn/133.3.700

Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, et al. Grape polyphenols exert a cardioprotective effect in preand postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr. 2005; 135(8): 1911-7. DOI: https://doi.org/10.1093/jn/135.8.1911

54. Touvier M, Druesne-Pecollo N, Kesse-Guyot E, Andreeva VA, Fezeu L, Galan P, et al. Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat. 2013; 137(1): 225-36. DOI: https://doi.org/10.1007/s10549-012-2323-y

Tu SH, Ku CY, Ho CT, Chen CS, Huang CS, Lee CH, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotineand estrogen-induced a9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol Nutr Food Res. 2011; 55(3): 455-66. DOI: https://doi.org/10.1002/mnfr.201000254

Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans. 1996; 24(3): 790-5. DOI: https://doi.org/10.1042/bst0240790

Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012; 65(6): 565-76. DOI: https://doi.org/10.1016/j.phrs.2012.03.007

Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, et al. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer. 2008; 99(4): 647-54. DOI: https://doi.org/10.1038/sj.bjc.6604521

Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003; 63(22): 7563-70.

Ruiz PA, Braune A, Hölzlwimmer G, Quintanilla-Fend L, Haller D. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr. 2007; 137(5): 1208-15. DOI: https://doi.org/10.1093/jn/137.5.1208

Bladé C, Baselga-Escudero L, Salvadó MJ, Arola-Arnal A. miRNAs, polyphenols, and chronic disease. Mol Nutr Food Res. 2013; 57(1): 58-70. DOI: https://doi.org/10.1002/mnfr.201200454

Li Y, Yuan YY, Meeran SM, Tollefsbol TO. Synergistic epigenetic reactivation of estrogen receptor-a (ERa) by combined green tea polyphenol and histone deacetylase inhibitor in ERanegative breast cancer cells. Mol Cancer. 2010; 9: 274. DOI: https://doi.org/10.1186/1476-4598-9-274

Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1a. Carcinogenesis. 2011; 32(12): 1881-9. DOI: https://doi.org/10.1093/carcin/bgr218

Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep. 2009; 26(8): 1001-43. DOI: https://doi.org/10.1039/b802662a

Svacina S. [Nutrigenetics and nutrigenomics]. Cas Lek Cesk. 2007; 146(11): 837-9.

Muto S, Fujita K, Yamazaki Y, Kamataki T. Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat Res. 2001; 479(1-2): 197-206. DOI: https://doi.org/10.1016/S0027-5107(01)00204-4

Netsch MI, Gutmann H, Schmidlin CB, Aydogan C, Drewe J. Induction of CYP1A by green tea extract in human intestinal cell lines. Planta Med. 2006; 72(6): 514-20. DOI: https://doi.org/10.1055/s-2006-931537

Engdal S, Nilsen OG. In vitro inhibition of CYP3A4 by herbal remedies frequently used by cancer patients. Phytother Res. 2009; 23(7): 906-12. DOI: https://doi.org/10.1002/ptr.2750

Bu-Abbas A, Clifford MN, Ioannides C, Walker R. Stimulation of rat hepatic UDP-glucuronosyl transferase activity following treatment with green tea. Food Chem Toxicol. 1995; 33(1): 27-30. DOI: https://doi.org/10.1016/0278-6915(95)80244-4

Bu-Abbas A, Clifford MN, Walker R, Ioannides C. Contribution of caffeine and flavanols in the induction of hepatic Phase II activities by green tea. Food Chem Toxicol. 1998; 36(8): 617-21. DOI: https://doi.org/10.1016/S0278-6915(98)00019-2

Zhu BT, Taneja N, Loder DP, Balentine DA, Conney AH. Effects of tea polyphenols and flavonoids on liver microsomal glucuronidation of estradiol and estrone. J Steroid Biochem Mol Biol. 1998; 64(3-4): 207-15. DOI: https://doi.org/10.1016/S0960-0760(97)00163-5

Chow HH, Hakim IA, Vining DR, Crowell JA, Tome ME, Ranger-Moore J, et al. Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomarkers Prev. 2007; 16(8): 1662-6. DOI: https://doi.org/10.1158/1055-9965.EPI-06-0830

Hakim IA, Harris RB, Chow HH, Dean M, Brown S, Ali IU. Effect of a 4-month tea intervention on oxidative DNA damage among heavy smokers: role of glutathione S-transferase genotypes. Cancer Epidemiol Biomarkers Prev. 2004; 13(2): 242-9. DOI: https://doi.org/10.1158/1055-9965.EPI-03-0193

Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012; 104(4): 326-39. DOI: https://doi.org/10.1093/jnci/djr531

Cerne JZ, Novakovic S, Frkovic-Grazio S, Pohar-Perme M, Stegel V, Gersak K. Estrogen metabolism genotypes, use of long-term hormone replacement therapy and risk of postmenopausal breast cancer. Oncol Rep. 2011; 26(2): 479-85.

Crooke PS, Justenhoven C, Brauch H; GENICA Consortium, Dawling S, Roodi N, et al. Estrogen metabolism and exposure in a genotypic-phenotypic model for breast cancer risk prediction. Cancer Epidemiol Biomarkers Prev. 2011; 20(7): 1502-15. DOI: https://doi.org/10.1158/1055-9965.EPI-11-0060

Sasaki M, Tanaka Y, Kaneuchi M, Sakuragi N, Dahiya R. CYP1B1 gene polymorphisms have higher risk for endometrial cancer, and positive correlations with estrogen receptor alpha and estrogen receptor beta expressions. Cancer Res. 2003; 63(14): 3913-8.

Yang HP, Gonzalez Bosquet J, Li Q, Platz EA, Brinton LA, Sherman ME, et al. Common genetic variation in the sex hormone metabolic pathway and endometrial cancer risk: pathway-based evaluation of candidate genes. Carcinogenesis. 2010; 31(5): 827-33. DOI: https://doi.org/10.1093/carcin/bgp328

Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, Schünemann HJ, et al. Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000; 11(6): 635-40. DOI: https://doi.org/10.1097/00001648-200011000-00004

Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA. 1997; 94(20): 10937-42. DOI: https://doi.org/10.1073/pnas.94.20.10937

Steinmetz R, Mitchner NA, Grant A, Allen DL, Bigsby RM, Ben-Jonathan N. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology. 1998; 139(6): 2741-7. DOI: https://doi.org/10.1210/endo.139.6.6027

Canales-Aguirre A, Padilla-Camberos E, Gómez-Pinedo U, Salado-Ponce H, Feria-Velasco A, De Celis R. Genotoxic effect of chronic exposure to DDT on lymphocytes, oral mucosa and breast cells of female rats. Int J Environ Res Public Health. 2011; 8(2): 540-53. DOI: https://doi.org/10.3390/ijerph8020540

Vu HA, Beppu Y, Chi HT, Sasaki K, Yamamoto H, Xinh PT, et al. Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor. J Biomed Biotechnol. 2010; 2010: 290516. DOI: https://doi.org/10.1155/2010/290516

Shimizu M, Shirakami Y, Moriwaki H. Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int J Mol Sci. 2008; 9(6): 1034-49. DOI: https://doi.org/10.3390/ijms9061034

Sen T, Dutta A, Chatterjee A. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs. 2010; 21(6): 632-44. DOI: https://doi.org/10.1097/CAD.0b013e32833a4385

Wahyudi S, Sargowo D. Green tea polyphenols inhibit oxidized LDL-induced NF-KB activation in human umbilical vein endothelial cells. Acta Med Indones. 2007; 39(2): 66-70.

Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012; 32(6): 421-7.

Shankar S, Ganapathy S, Srivastava RK. Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci. 2007; 12: 4881-99. DOI: https://doi.org/10.2741/2435

Butt MS, Sultan MT. Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr. 2009; 49(5): 463-73. DOI: https://doi.org/10.1080/10408390802145310

Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007; 117(5): 1137-46. DOI: https://doi.org/10.1172/JCI31405

Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol. 2012; 25(1): 61-73. DOI: https://doi.org/10.1021/tx200378c

Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012; 32(6): 421-7. DOI: https://doi.org/10.1016/j.nutres.2012.05.007

Taromaru GC, de Oliveira VM, Silva MA, Montor WR, Bagnoli F, Rinaldi JF, et al. Interaction between cyclooxygenase-2 and insulin-like growth factor in breast cancer: A new field for prevention and treatment. Oncol Lett. 2012; 3(3): 682-688. DOI: https://doi.org/10.3892/ol.2011.532

Shimizu K, Kinouchi Shimizu N, Hakamata W, Unno K, Asai T, Oku N. Preventive effect of green tea catechins on experimental tumor metastasis in senescence-accelerated mice. Biol Pharm Bull. 2010; 33(1): 117-21. DOI: https://doi.org/10.1248/bpb.33.117

Zhu M, Gong Y, Yang Z. [Protective effect of tea on immune function in mice]. Zhonghua Yu Fang Yi Xue Za Zhi. 1998; 32(5): 270-4.

Landis-Piwowar K, Chen D, Chan TH, Dou QP. Inhibition of catechol-Omicron-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (-)-EGCG. Oncol Rep. 2010; 24(2): 563-9. DOI: https://doi.org/10.3892/or_00000893

Rosato V, Bosetti C, Talamini R, Levi F, Montella M, Giacosa A, et al. Metabolic syndrome and the risk of breast cancer in postmenopausal women. Ann Oncol. 2011; 22(12): 2687-92. DOI: https://doi.org/10.1093/annonc/mdr025

Xue F, Michels KB. Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr. 2007; 86(3): s823-35. DOI: https://doi.org/10.1093/ajcn/86.3.823S

Grothey A, Voigt W, Schöber C, Müller T, Dempke W, Schmoll HJ. The role of insulin-like growth factor I and its receptor in cell growth, transformation, apoptosis, and chemoresistance in solid tumors. J Cancer Res Clin Oncol. 1999; 125(3-4): 166-73. DOI: https://doi.org/10.1007/s004320050259

Melnik BC. Milk - the promoter of chronic Western diseases. Med Hypotheses. 2009; 72(6): 631-9. DOI: https://doi.org/10.1016/j.mehy.2009.01.008

Maiti B, Kundranda MN, Spiro TP, Daw HA. The association of metabolic syndrome with triple-negative breast cancer. Breast Cancer Res Treat. 2010; 121(2): 479-83. DOI: https://doi.org/10.1007/s10549-009-0591-y

Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res Commun. 2005; 334(3): 947-53. DOI: https://doi.org/10.1016/j.bbrc.2005.06.182

Shimizu M, Shirakami Y, Sakai H, Yasuda Y, Kubota M, Adachi S, et al. (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem Biol Interact. 2010; 185(3): 247-52. DOI: https://doi.org/10.1016/j.cbi.2010.03.036

Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008; 269(2): 269-80. DOI: https://doi.org/10.1016/j.canlet.2008.04.014

Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem. 2010; 10(7): 571-81. DOI: https://doi.org/10.2174/187152010793498663

Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011; 406(2): 194-9. DOI: https://doi.org/10.1016/j.bbrc.2011.02.010

Inoue M, Tajima K, Mizutani M, Iwata H, Iwase T, Miura S, et al. Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett. 2001; 167(2): 175-82. DOI: https://doi.org/10.1016/S0304-3835(01)00486-4

Suzuki Y, Tsubono Y, Nakaya N, Suzuki Y, Koizumi Y, Tsuji I. Green tea and the risk of breast cancer: pooled analysis of two prospective studies in Japan. Br J Cancer. 2004; 90(7): 1361-3. DOI: https://doi.org/10.1038/sj.bjc.6601652

Zhang M, Holman CD, Huang JP, Xie X. Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis. 2007; 28(5): 1074-8. DOI: https://doi.org/10.1093/carcin/bgl252

Inoue M, Robien K, Wang R, Van Den Berg DJ, Koh WP, Yu MC. Green tea intake, MTHFR/TYMS genotype and breast cancer risk: the Singapore Chinese Health Study. Carcinogenesis. 2008; 29(10): 1967-72. DOI: https://doi.org/10.1093/carcin/bgn177

Zhang M, Huang J, Xie X, Holman CD. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer. 2009; 124(6): 1404-8. DOI: https://doi.org/10.1002/ijc.24047

Shrubsole MJ, Lu W, Chen Z, Shu XO, Zheng Y, Dai Q, et al. Drinking green tea modestly reduces breast cancer risk. J Nutr. 2009; 139(2): 310-6. DOI: https://doi.org/10.3945/jn.108.098699

Descargas

Publicado

2013-11-20

Cómo citar

Pardos-Sevilla, C., & Mach, N. (2013). Efectos del té verde sobre el riesgo de cáncer de mama. Revista Española De Nutrición Humana Y Dietética, 18(1), 25–34. https://doi.org/10.14306/renhyd.18.1.27