La alimentación en los viajes espaciales tripulados: desde el Programa Gemini hasta la ISS/Shuttle

Autores/as

  • Juan Antonio Gomar-Serrano Departamento de Medicina Preventiva, Salud Pública, Ciencias de la Alimentación, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Valencia, España
  • José Miguel Soriano -Del Castillo Departamento de Medicina Preventiva, Salud Pública, Ciencias de la Alimentación, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Valencia, España
  • Laura Bilbao Cercós Clínica Universitaria de Nutrición, Actividad Física y Fisioterapia (CUNAFF VLC/CAMPUS), España

DOI:

https://doi.org/10.14306/renhyd.0.0.116

Palabras clave:

Viaje espacial, Astronautas, Alimentos, Envasado de alimentos.

Resumen

Los alimentos espaciales han tenido una gran importancia en el desarrollo de las misiones espaciales tripuladas ya que constituyen la única fuente de energía y nutrientes para el ser humano fuera del planeta Tierra. Dichos alimentos han experimentado una gran evolución desde el inicio del Programa Mercury hasta las actuales misiones a la International Space Station (ISS). En un primer momento eran diseñados para ofrecer una gran densidad energética y nutritiva y actualmente se da prioridad a las características organolépticas y psicológicas, ya que contribuyen a un mayor consumo y un mejor estado nutricional de los astronautas. El objetivo del presente estudio es hacer un análisis retrospectivo de las publicaciones hasta la fecha sobre alimentos espaciales para ver si los disponibles actualmente son apropiados para mantener un buen estado nutricional de los astronautas en el marco de una misión espacial tripulada al espacio profundo. Para la búsqueda de estos artículos se ha utilizado la base de datos de PubMed y de la web del Jet Propulsion Laboratory de la National Aeronautics and Space Administration (NASA), de los artículos publicados hasta el año 2012.

Citas

(1) Zasypkin DV, Lee TC. Food processing on a space station: feasibility and opportunities. Life Support Biosph Sci. 1999; 6(1): 39–52.

(2) Schwartzkopf SH. Human life support for advanced space exploration. Adv Space Biol Med. 1997; 6: 231–53.

(3) Zimmerman B. Heat transfer and cooking. Cooking for Engineers [revista en internet]. 2007 [consulta: 27/07/2014]. Disponible en: http://www.cookingforengineers.com/article/224/Heat-Transfer-and-Cooking

(4) Gandolph J, El–Abiad M, Mauer LJ, Perchonok MH. Equivalent system mass (ESM) estimates for commercially available, small–scale food processing equipment. SAE Technical Paper. 2004; 01: 2526.

(5) Gregson CM, Lee T–C. Considerations in the development of food processing and products for long–term space missions in a near self–sufficient environment. Spec Publ– R Soc Chem. 2001; 274: 477–91.

(6) Fu B, Nelson PE. Conditions and constraints of food processing in space. Food Technol. 1994; 48(9): 113–22, 127, 204.

(7) Rickman JC, Bruhn CM, Barrett DM. Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamins A and carotenoids, vitamin E, minerals and fiber. J Sci Food Agric. 2007; 87: 1185–96.

(8) Rickman JC, Barrett DM, Bruhn CM. Nutritional comparison of fresh, frozen, and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J Sci Food Agric. 2007; 87: 930–44.

(9) Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci. 2005; 70(1): 11– 19.

(10) Rock CL, Lovalvo JL, Emenhiser C, Ruffin MT, Flatt SW, Schwartz SJ. Bioavailability of beta–carotene is lower in raw than in processed carrots and spinach in women. J Nutr. 1998; 128(5): 913–6.

(11) Van het Hof KH, Tijburg LBM, Pietrzik K, Weststrate JA. Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. J Nutr. 1999; 82(3): 203–12.

(12) Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem. 2002; 50(10): 3010–4.

(13) Cooper M, Douglas G, Perchonok M. Developing the NASA food system for long–duration missions. J Food Sci. 2011; 76(2): R40–8.

(14) Huber CS, Heidelbaugh ND, Smith MC, Klicka M. Space foods. En: Birch GG, Green LF, Plaskett LG, editores. Health and foods. New York: John Wiley and Sons; 1972. p. 130–51.

(15) Perchonok MH, Cooper MR, Catauro PM. Mission to Mars: food production and processing for the final frontier. Annu Rev Food Sci Technol. 2012; 3: 311–30.

(16) Smith MC, Heidelbaugh ND, Rambaut PC, Rapp RM, Wheeler HO, Huber CS, et al. Apollo food technology. En: Johnston RS, Dietlein LF, Berry CA. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, National Aeronautics and Space Administration, U.S. Govt. Print. Off.; 1975. p. 437–84.

(17) Stoklosa A. Packaged food mass reduction trade study. NASA Advanced Capabilities Division Research & Technology Task Book [revista en internet]. 2009 [consulta: 27/07/2014]. Disponible en: http://taskbook.nasaprs.com/Publication/index.cfm?action=public_query_taskbook_contentTASKID=7369

(18) Wydeven T, Golub MA. Waste streams in a crewed space habitat. Waste Manag Res. 1991; 9: 91–101.

(19) Oziomek T, Catauro P. Bulk overwrap packaging. NASA Advanced Capabilities Division Research & Technology Task Book [revista en internet]. 2009 [consulta: 27/07/2014]. Disponible en: http://taskbook.nasaprs.com/Publication/index.cfm?action=public_query_taskbook_contentTASKID=7595

(20) Hoffman SJ, Kaplan DI, Mars Exploration Study Team. Human exploration of Mars: the reference mission of the NASA Mars Exploration Study Team. Houston, Tex.: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center; 1997.

(21) Perchonok MH, Swango B, Stevens I, Clynch M. Shelf Life Determination of Thermally Processed Foods. SAE International [revista en internet]. 2003 [consulta: 27/07/2014]; 2003–01– 2621. Disponible en: http://papers.sae.org/2003-01-2621/

(22) Perchonok M. Thermostabilized food study (former title–shelf life determination of thermally processed foods). NASA Advanced Capabilities Division Research & Technology Task Book [revista en internet]. 2005 [consulta: 27/07/2014]. Disponible en: http://taskbook.nasaprs.com/Publication/index.cfm?action=public_query_taskbook_contentTASKID=3790

(23) Perchonok M, Antonini D. Thermostabilized shelf life study. Proceedings from the NASA Human Research Program Investigators Workshop [revista en internet]. 2008 [consulta: 27/07/2014]. Disponible en: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080010623.pdf

(24) Fu B, Nelson PE, Irvine R, Kanach LL. Processing of nutritious, safe and acceptable foods from CELSS candidate crops. Adv Space Res. 1996; 18(1–2): 241–50.

(25) Smith SM, Zwart SR, Block G, Rice BL, Davis–Street JE. The nutritional status of astronauts is altered after long–term space flight aboard the International Space Station. J Nutr. 2005; 135(3): 437–43.

(26) Zwart SR, Kloeris VL, Perchonok MH, Smith M. Assessment of nutrient stability in foods from the space food system after long–duration spaceflight on the ISS. J Food Sci. 2009; 74(7): H209–17.

(27) Bowman BA, Russell RM. Present knowledge in nutrition. Washington, DC: ILSI Press; 2001. p. 805.

Descargas

Publicado

2014-12-09

Cómo citar

Gomar-Serrano, J. A., Soriano -Del Castillo, J. M., & Bilbao Cercós, L. (2014). La alimentación en los viajes espaciales tripulados: desde el Programa Gemini hasta la ISS/Shuttle. Revista Española De Nutrición Humana Y Dietética, 19(2), 116–123. https://doi.org/10.14306/renhyd.0.0.116