Suplementos dietéticos comerciales para el control de sobrepeso: fuentes naturales de fácil acceso, mecanismos de acción y efectos adversos

Autores/as

  • Julieth Bellaizac Riascos Semillero de Investigación Indicadores de Calidad, Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Departamento de Química, Universidad del Cauca, Popayán, Colombia
  • Diana M. Chito Trujillo Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Departamento de Química, Universidad del Cauca, Popayán, Colombia
  • Maite Rada Mendoza Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Departamento de Química, Universidad del Cauca, Popayán, Colombia

DOI:

https://doi.org/10.14306/renhyd.26.s1.1352

Palabras clave:

Fármacos Antiobesidad, Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos, Obesidad, Productos Biológicos, Sobrepeso, Suplementos dietéticos

Resumen

Introducción: El uso de suplementos dietéticos es una de las estrategias actualmente más implementada por la población para contrarrestar el sobrepeso u obesidad debido a su fácil y rápida adquisición en Internet, pese a que muchos de ellos no cuenten con un respaldo científico que justifiquen su efectividad y seguridad. En esta revisión se describen los mecanismos de acción y efectos adversos de los principales suplementos para el control de sobrepeso de venta online en el mercado colombiano.

Material y métodos: En las plataformas de compra online: Amazon, eBay, Walmart, Alibaba, Aliexpress y Mercado libre (Colombia), se identificaron las fuentes naturales de los suplementos dietéticos más destacados (Coffea arábica, Camellia sinensis, Garcinia cambogia, Rubus idaeus, Moringa oleifera, Smallanthus sonchifolius, Cinnamomum verum, Capsicum frutescens L, Cynara scolymus, Zingiber officinale y Hibiscus sabdariffa). Se realizó una revisión siguiendo las recomendaciones propuestas por la declaración PRISMA. Las bases de datos utilizadas para la búsqueda de los artículos entre 2010 y 2020 fueron ScienceDirect, PubMed, SCOPUS, SciELO, Web of Science y el buscador Google académico. Un total de 189 referencias fueron contempladas.

Resultados: Los principios bioactivos (aislados o en extractos) identificados en las fuentes naturales fueron: polifenoles, teaflavinas, (-)-epigalocatequina-3-O-galato  (EGCG), (-)-3-O-(3-O-metil) galato de epigalocatequina (EGCG3), ácido clorogénico, cinamaldehído y  ácido hidroxicítrico (HCA), que han demostrado en cultivos celulares y en animales modelo, su capacidad para regular el metabolismo energético, disminuir la lipogénesis, aumentar la oxidación de ácidos grasos e inhibir su síntesis, regular la ingesta de alimentos, entre otras. La hepatotoxicidad y los problemas gastrointestinales con sintomatología leve o moderada, son los efectos adversos más comunes asociados al consumo de este tipo de fuentes.

Conclusiones: El efecto en la pérdida de peso de las fuentes naturales abordadas en esta revisión, está científicamente respaldada con ensayos in vitro e in vivo con animales, pero debido al escaso soporte científico evidenciado a partir de ensayos clínicos controlados aleatorizados, es necesario realizar más estudios para establecer la objetividad de lo observado y evaluar la seguridad del uso de los suplementos dietéticos derivados para el control de sobrepeso.

Biografía del autor/a

Julieth Bellaizac Riascos, Semillero de Investigación Indicadores de Calidad, Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Departamento de Química, Universidad del Cauca, Popayán, Colombia

Química de Universidad del Cauca. Desde junio de 2020 se desempeña como investigador de apoyo en el proyecto ID-4486 del Grupo de Investigación Bicamsa de trabajos de investigación en el marco de la línea "Estandarización y Validación de Técnicas Analíticas". 

Diana M. Chito Trujillo, Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Departamento de Química, Universidad del Cauca, Popayán, Colombia

D. Chito-Trujillo es Química por la Universidad del Cauca (2006) y Doctora en Electroquímica, Ciencia y Tecnología por la Universidad de Lleida (2012). Sus intereses de investigación son la ciencia de los alimentos y los sistemas ambientales. Desde 2015 se desempeña como docente del Departamento de Química de la Universidad del Cauca.

Maite Rada Mendoza, Grupo de Investigación Biotecnología, Calidad Medioambiental y Seguridad Agroalimentaria (BICAMSA), Departamento de Química, Universidad del Cauca, Popayán, Colombia

M. del P. Rada-Mendoza culminó su pregrado en Química en 1994 y su maestría en Química en 1998, ambos en la Universidad del Valle (Cali, Colombia). Finalizó su doctorado en Ciencia y Tecnología de los Alimentos en 2004 en la Universidad Autónoma de Madrid (Madrid, España). Sus intereses de investigación incluyen líneas como la bioinformática, la calidad ambiental y los alimentos. Es directora del grupo de investigación BICAMSA (A1 en Colciencias) y profesora titular del Departamento de Química.

 

Citas

(1) FAO, OPS, WFP, UNIC. Panorama de la seguridad alimentaria y nutricional en América Latina y el Caribe. Licencia: CC BY-NC-SA 30 IGO. 2019:136.

(2) Matsuda M, Shimomura I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity Research & Clinical Practice. 2013;7(5):e330-41, doi: 10.1016/j.orcp.2013.05.004.

(3) Singla P. Metabolic effects of obesity: A review. World Journal of Diabetes. 2010;1(3):76, doi: 10.4239/wjd.v1.i3.76.

(4) Misra M. Obesity Pharmacotherapy: Current Perspectives and Future Directions. Current Cardiology Reviews. 2013;9(1):33-54, doi: 10.2174/157340313805076322.

(5)Abe AM, Hein DJ, Gregory PJ. Regulatory alerts for dietary supplements in Canada and the United States, 2005-13. American Journal of Health-System Pharmacy. 2015;72(11):966-71, doi: 10.2146/ajhp140574.

(6) Li M-F. Rise and fall of anti-obesity drugs. WJD. 2011;2(2):19, doi: 10.4239/wjd.v2.i2.19.

(7) Sánchez-Chávez NP, Reyes-Hernández KL, Reyes-Hernández MU, Reyes-Hernández PO, Reyes-Hernández DP, Reyes-Gómez U. Prevalencia de Botiquines Caseros, Exposición a la Television y Automedicación. Bol Clin Hosp Infant Edo Son 2015; 32(1): 10-15.

(8) Martín Fombellida AB, Alonso Sardón M, Iglesias de Sena H, Sáez Lorenzo M, Mirón Canelo JA. Información sobre medicamentos y automedicación en las redes sociales. Revista Cubana de Información en Ciencias de la Salud. 2014;25:145-56.

(9) Yun JW. Possible anti-obesity therapeutics from nature – A review. Phytochemistry. 2010;71(14-15):1625-41, doi: 10.1016/j.phytochem.2010.07.011.

(10) Brown AC. An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Part 1 of 5 series. Food and Chemical Toxicology. 2017:449-71, doi: 10.1016/j.fct.2016.11.001.

(11) Lobb A. Science of weight loss supplements: Compromised by conflicts of interest? World Journal of Gastroenterology. 2010:4880-2, doi: 10.3748/wjg.v16.i38.4880.

(12) Moher D, Liberati A, Tetzlaff J, Altman DG, for the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339(jul21 1):b2535-b2535, doi: 10.1136/bmj.b2535.

(13) Czepielewska E, Makarewicz-Wujec M, Różewski F, Wojtasik E, Kozłowska-Wojciechowska M. Drug adulteration of food supplements: A threat to public health in the European Union? Regulatory Toxicology and Pharmacology. 2018;97:98-102, doi: 10.1016/j.yrtph.2018.06.014.

(14) Sánchez Oliver AJ, Miranda León MT, Guerra Hernández E. Estudio estadístico del consumo de suplementos nutricionales y dietéticos en gimnasios. Archivos Latinoamericanos de Nutrición. 2008;58(3).

(15) OMS. Sistema Mundial de Vigilencia y Monitoreo de Productos Médicos de Calidad Subestándar y Falsificados. 2018.

(16) Khan MH, Tanimoto T, Nakanishi Y, Yoshida N, Tsuboi H, Kimura K. Public health concerns for anti-obesity medicines imported for personal use through the internet: A cross-sectional study. BMJ Open. 2012;2(3):e000854, doi: 10.1136/bmjopen-2012-000854.

(17) Yoshida N, Numano M, Nagasaka Y, Ueda K, Tsuboi H, Tanimoto T, et al. Study on health hazards through medicines purchased on the Internet: A cross-sectional investigation of the quality of anti-obesity medicines containing crude drugs as active ingredients. BMC Complementary and Alternative Medicine. 2015;15(1):1-11, doi: 10.1186/s12906-015-0955-2.

(18) Garcia-Alvarez A, Mila-Villarroel R, Ribas-Barba L, Egan B, Badea M, Maggi FM, et al. Usage of Plant Food Supplements (PFS) for weight control in six European countries: Results from the PlantLIBRA PFS Consumer Survey 2011-2012. BMC Complementary and Alternative Medicine. 2016;16(1):1-15, doi: 10.1186/s12906-016-1227-5.

(19) Mckay DL, Blumberg JB, Mckay DL, Blumberg JB. The Role of Tea in Human Health : An Update. Journal of the American College of Nutrition. 2014;21(1):1-13, doi: 10.1080/07315724.2002.10719187.

(20) Sanlier N, Gokcen BB, Altuğ M. Tea consumption and disease correlations. Trends in Food Science & Technology. 2018;78:95-106, doi: https://doi.org/10.1016/j.tifs.2018.05.026.

(21) Chan EricWC, Tie P, Soh E, Law Y. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Phcog Res. 2011;3(4):266, doi: 10.4103/0974-8490.89748.

(22) Vernarelli JA, Lambert JD. Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. European Journal of Nutrition. 2013;52(3):1039-48, doi: 10.1007/s00394-012-0410-9.

(23) Yoo SH, Lee YE, Chung JO, Rha CS, Hong YD, Park MY, et al. Enhancing the effect of catechins with green tea flavonol and polysaccharides on preventing lipid absorption and accumulation. Lwt. 2020;134(January):110032, doi: 10.1016/j.lwt.2020.110032.

(24) Cheng M, Zhang X, Miao Y, Cao J, Wu Z, Weng P. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International. 2017;92:9-16, doi: 10.1016/j.foodres.2016.12.008.

(25) Liu Z, Chen Z, Guo H, He D, Zhao H, Wang Z, et al. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct. 2016;7(12):4869-79, doi: 10.1039/C6FO01439A.

(26) Hamdaoui MH, Snoussi C, Dhaouadi K, Fattouch S, Ducroc R, Le Gall M, et al. Tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea. Journal of Nutrition and Intermediary Metabolism. 2016;6:33-40, doi: 10.1016/j.jnim.2016.07.002.

(27) Kubota K, Sumi S, Tojo H, Sumi-Inoue Y, I-chin H, Oi Y, et al. Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract. Nutrition Research. 2011;31(6):421-8, doi: 10.1016/j.nutres.2011.05.004.

(28) Hibi M, Takase H, Iwasaki M, Osaki N, Katsuragi Y. Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: a pooled analysis of 6 human trials. Nutrition Research. 2018:1-10, doi: 10.1016/j.nutres.2018.03.012.

(29) Nishijima M, Saes MSM, Postali FAS. Análise de concorrência no mercado mundial de café verde. Rev Econ Sociol Rural. 2012;50:69-82, doi: 10.1590/S0103-20032012000100004.

(30) Esquivel P, Jiménez VM. Functional properties of coffee and coffee by-products. Food Research International. 2012;46(2):488-95, doi: 10.1016/j.foodres.2011.05.028.

(31) Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition. 2017:2215-44, doi: 10.1007/s00394-017-1379-1.

(32) Choi BK, Park SB, Lee DR, Lee HJ, Jin YY, Yang SH, et al. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pacific Journal of Tropical Medicine. 2016;9(7):635-43, doi: 10.1016/j.apjtm.2016.05.017.

(33) Haidari F, Samadi M, Mohammadshahi M, Jalali MT, Engali KA. Energy restriction combined with green coffee bean extract affects serum adipocytokines and the body composition in obese women. Asia Pacific Journal of Clinical Nutrition. 2017;26(6):1048-54, doi: 10.6133/apjcn.022017.03.

(34) Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology. 2010;48(3):937-43, doi: 10.1016/j.fct.2010.01.003.

(35) Henry-Vitrac C, Ibarra A, Roller M, Mérillon JM, Vitrac X. Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-phosphatase activity in vitro by svetol, a standardized decaffeinated green coffee extract. Journal of Agricultural and Food Chemistry. 2010;58(7):4141-4, doi: 10.1021/jf9044827.

(36) Ong KW, Hsu A, Tan BKH. Chlorogenic Acid Stimulates Glucose Transport in Skeletal Muscle via AMPK Activation: A Contributor to the Beneficial Effects of Coffee on Diabetes. PLoS ONE. 2012;7(3):e32718, doi: 10.1371/journal.pone.0032718.

(37)Song SJ, Choi S, Park T. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evidence-based Complementary and Alternative Medicine. 2014;2014, doi: 10.1155/2014/718379.

(38) Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis JP, et al. Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: Results from an intervention study. Molecular Nutrition and Food Research. 2011;55(5):793-7, doi: 10.1002/mnfr.201100093.

(39) Roshan H, Nikpayam O, Sedaghat M, Sohrab G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomised clinical trial. British Journal of Nutrition. 2018;119(3):250-8, doi: 10.1017/S0007114517003439.

(40) Gorji Z, Varkaneh HK, Talaei S, Nazary-Vannani A, Clark CCT, Fatahi S, et al. The effect of green-coffee extract supplementation on obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytomedicine. 2019:153018, doi: 10.1016/j.phymed.2019.153018.

(41) Sarriá B, Martínez-López S, Mateos R, Bravo-Clemente L. Long-term consumption of a green/roasted coffee blend positively affects glucose metabolism and insulin resistance in humans. Food Research International. 2016;89:1023-8, doi: 10.1016/j.foodres.2015.12.032.

(42) Kotyczka C, Boettler U, Lang R, Stiebitz H, Bytof G, Lantz I, et al. Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Molecular Nutrition and Food Research. 2011;55(10):1582-6, doi: 10.1002/mnfr.201100248.

(43) Al-Dujaili E, Abu Hajleh M, Al-Turk W. Effect of Green Coffee Bean Extract Consumption on Blood Pressure and Anthropometric Measures in Healthy Volunteers: A Pilot Crossover Placebo Controlled Study. Jordan Journal of Pharmaceutical Sciences. 2016;9:181-91, doi: 10.12816/0033383.

(44) Mubarak A, Hodgson JM, Considine MJ, Croft KD, Matthews VB. Supplementation of a High-Fat Diet with Chlorogenic Acid Is Associated with Insulin Resistance and Hepatic Lipid Accumulation in Mice. Journal of Agricultural and Food Chemistry. 2013;61(18):4371-8, doi: 10.1021/jf400920x.

(45) Hosseini SA, Eskandar H, Malehi AS, Alipour M. Effects of Green Coffee Bean Extract Supplementation on Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. 2017, doi: 10.5812/hepatmon.45609.

(46) Cheong JD, Croft KD, Henry PD, Matthews V, Hodgson JM, Ward NC. Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet. Archives of Biochemistry and Biophysics. 2014;559:46-52, doi: 10.1016/j.abb.2014.02.005.

(47) Silva M, Bernardo A, de mesquita M, Singh J. Beneficial Uses of Cinnamon in Health and Diseases: An Interdisciplinary Approach. 2018. p. 565-78.

(48) Qin B, Dawson HD, Schoene NW, Polansky MM, Anderson RA. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition. 2012;28(11-12):1172-9, doi: 10.1016/j.nut.2012.03.020.

(49) Geng S, Cui Z, Huang X, Chen Y, Xu D, Xiong P. Variations in essential oil yield and composition during Cinnamomum cassia bark growth. Industrial Crops and Products. 2011;33(1):248-52, doi: 10.1016/j.indcrop.2010.10.018.

(50) Huang B, Yuan HD, Kim DY, Quan HY, Chung SH. Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. Journal of Agricultural and Food Chemistry. 2011;59(8):3666-73, doi: 10.1021/jf104814t.

(51) Jiang J, Emont MP, Jun H, Qiao X, Liao J, il Kim D, et al. Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic reprogramming. Metabolism: Clinical and Experimental. 2017;77:58-64, doi: 10.1016/j.metabol.2017.08.006.

(52) Neto JGO, Boechat SK, Romão JS, Pazos-Moura CC, Oliveira KJ. Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. Journal of Nutritional Biochemistry. 2020;77:108321, doi: 10.1016/j.jnutbio.2019.108321.

(53) Camacho S, Michlig S, De Senarclens-Bezençon C, Meylan J, Meystre J, Pezzoli M, et al. Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Scientific Reports. 2015;5(1):1-10, doi: 10.1038/srep07919.

(54) Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clinical Nutrition. 2019;38(2):549-56, doi: 10.1016/j.clnu.2018.03.003.

(55) Gupta Jain S, Puri S, Misra A, Gulati S, Mani K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: A randomized double -blind control trial. Lipids in Health and Disease. 2017;16(1):1-11, doi: 10.1186/s12944-017-0504-8.

(56) Mousavi SM, Rahmani J, Kord-Varkaneh H, Sheikhi A, Larijani B, Esmaillzadeh A. Cinnamon supplementation positively affects obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. Clinical Nutrition. 2020;39(1):123-33, doi: 10.1016/j.clnu.2019.02.017.

(57) Hajimonfarednejad M, Nimrouzi M, Heydari M, Zarshenas MM, Raee MJ, Jahromi BN. Insulin resistance improvement by cinnamon powder in polycystic ovary syndrome: A randomized double-blind placebo controlled clinical trial. Phytotherapy Research. 2018;32(2):276-83, doi: 10.1002/ptr.5970.

(58) Akilen R, Tsiami A, Devendra D, Robinson N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: A randomized, placebo-controlled, double-blind clinical trial. Diabetic Medicine. 2010;27(10):1159-67, doi: 10.1111/j.1464-5491.2010.03079.x.

(59) Wainstein J, Stern N, Heller S, Boaz M. Dietary Cinnamon Supplementation and Changes in Systolic Blood Pressure in Subjects with Type 2 Diabetes. Journal of Medicinal Food. 2011;14(12):1505-10, doi: 10.1089/jmf.2010.0300.

(60) Li Y, Hong Y, Han Y, Wang Y, Xia L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2016;1011:223-32, doi: 10.1016/j.jchromb.2016.01.009.

(61) Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. Journal of Nutritional Biochemistry. 2019;70:105-15, doi: 10.1016/j.jnutbio.2019.05.001.

(62) Misawa K, Hashizume K, Yamamoto M, Minegishi Y, Hase T, Shimotoyodome A. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. Journal of Nutritional Biochemistry. 2015;26(10):1058-67, doi: 10.1016/j.jnutbio.2015.04.014.

(63) Brahma Naidu P, Uddandrao VVS, Ravindar Naik R, Suresh P, Meriga B, Begum MS, et al. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Molecular and Cellular Endocrinology. 2016;419:139-47, doi: 10.1016/j.mce.2015.10.007.

(64) Tzeng TF, Liu IM. 6-Gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine. 2013;20(6):481-7, doi: 10.1016/j.phymed.2012.12.006.

(65) Zordan AJCM, Bertoncini-Silva C, Joaquim AG, Rodrigues M, Machado CD, Carlos D, et al. Gingerol supplementation does not change glucose tolerance, lipid profile and does not prevent weight gain in C57BL/6 mice fed a high-fat diet. Clinical Nutrition Experimental. 2020;32:11-9, doi: 10.1016/j.yclnex.2020.05.001.

(66) Mansour MS, Ni YM, Roberts AL, Kelleman M, Roychoudhury A, St-Onge MP. Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men: A pilot study. Metabolism: Clinical and Experimental. 2012;61(10):1347-52, doi: 10.1016/j.metabol.2012.03.016.

(67) Attari V, Ostadrahimi A, Asghari Jafarabadi M, Mehralizadeh S, Mahluji S. Changes of serum adipocytokines and body weight following Zingiber officinale supplementation in obese women: a RCT. European Journal of Nutrition. 2016;55(6):2129-36, doi: 10.1007/s00394-015-1027-6.

(68) Gregersen NT, Belza A, Jensen MG, Ritz C, Bitz C, Hels O, et al. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects. British Journal of Nutrition. 2013;109(3):556-63, doi: 10.1017/S0007114512001201.

(69) Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia. 2015;102:134-48, doi: 10.1016/j.fitote.2015.02.012.

(70) Subhashini N, Nagarajan G, Kaviman S. In vitro antioxidant and anticholinesterase activities of Garcinia combogia. International Journal of Pharmacy and Pharmaceutical Sciences. 2011;3:129-32.

(71) Han J, Li L, Wang D, Ma H. (-)-Hydroxycitric acid reduced fat deposition via regulating lipid metabolism-related gene expression in broiler chickens. Lipids in Health and Disease. 2016;15(1):1-13, doi: 10.1186/s12944-016-0208-5.

(72) Li L, Jiang Z, Yao Y, Yang Z, Ma H. (−)-Hydroxycitric acid regulates energy metabolism by activation of AMPK - PGC1α - NRF1 signal pathway in primary chicken hepatocytes. Life Sciences. 2020;254:117785, doi: 10.1016/j.lfs.2020.117785.

(73) Sethi A. A review on «garcinia cambogia-a weight controlling agent». vol. 3. vol. 3. 2011.

(74) Yimam M, Jiao P, Hong M, Brownell L, Lee YC, Hyun EJ, et al. Evaluation of Natural Product Compositions for Appetite Suppression. Journal of Dietary Supplements. 2019;16(1):86-104, doi: 10.1080/19390211.2018.1429518.

(75) Li L, Zhang H, Yao Y, Yang Z, Ma H. (−)-Hydroxycitric Acid Suppresses Lipid Droplet Accumulation and Accelerates Energy Metabolism via Activation of the Adiponectin-AMPK Signaling Pathway in Broiler Chickens. J Agric Food Chem. 2019;67(11):3188-97, doi: 10.1021/acs.jafc.8b07287.

(76) Onakpoya I, Hung SK, Perry R, Wider B, Ernst E. The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: A systematic review and meta-analysis of randomised clinical trials. Journal of Obesity. 2011;2011:1-9, doi: 10.1155/2011/509038.

(77) Raina R, Mondhe DM, Malik JK, Gupta RC. Chapter 48 - Garcinia cambogia. En: Gupta RC, editor. Nutraceuticals. Boston: Academic Press; 2016. p. 669-80.

(78) Mattes RD, Bormann L. Effects of (-)-hydroxycitric acid on appetitive variables. Physiology and Behavior. 2000;71(1-2):87-94, doi: 10.1016/S0031-9384(00)00321-8.

(79) Anton SD, Shuster J, Leeuwenburgh C. Investigations of botanicals on food intake, satiety, weight loss and oxidative stress: Study protocol of a double-blind, placebo-controlled, crossover study. Journal of Chinese Integrative Medicine. 2011:1190-8, doi: 10.3736/jcim20111106.

(80) Vasques CAR, Schneider R, Klein-Júnior LC, Falavigna A, Piazza I, Rossetto S. Hypolipemic Effect of Garcinia cambogia in Obese Women. Phytotherapy Research. 2014;28(6):887-91, doi: 10.1002/ptr.5076.

(81) Golzar S, Mahboob S, Tavakkoli S, Asghari Jafarabadi M, Rezazadeh K, Vaghef-Mehrabany E, et al. Effects of hydroxy citric acid on body weight and serum hepcidin level in women with non-alcoholic fatty liver disease. Advances in Integrative Medicine. 2020, doi: 10.1016/j.aimed.2020.07.013.

(82) Maia-Landim A, Ramírez JM, Lancho C, Poblador MS, Lancho JL. Long-term effects of Garcinia cambogia/Glucomannan on weight loss in people with obesity, PLIN4, FTO and Trp64Arg polymorphisms. BMC Complementary and Alternative Medicine. 2018;18(1):26, doi: 10.1186/s12906-018-2099-7.

(83) Kim YJ, Choi MS, Park YB, Kim SR, Lee MK, Jung UJ. Garcinia cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World Journal of Gastroenterology. 2013;19(29):4689-701, doi: 10.3748/wjg.v19.i29.4689.

(84) Christaki E, Bonos E, Florou-Paneri P. Nutritional And Functional Properties of Cynara Crops (Globe Artichoke and Cardoon) and Their Potential Applications: A Review. vol. 2. vol. 2. 2012.

(85) Gostin AI, Waisundara VY. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends in Food Science and Technology. 2019:381-91, doi: 10.1016/j.tifs.2019.02.015.

(86) Colantuono A, Ferracane R, Vitaglione P. Potential bioaccessibility and functionality of polyphenols and cynaropicrin from breads enriched with artichoke stem. Food Chemistry. 2018;245:838-44, doi: 10.1016/j.foodchem.2017.11.099.

(87) Cisneros P, Misael E, Torres-Mendoza BM, Carlos J, Ledezma R. Effect of Cynara scolymus (artichoke) in Homeopathic Doses on Body Mass Index in Obese and Overweight Patients Human Health and environmental contamination by pathogens View project SERINC as a Restriction Factor to Inhibit Viral Infectivity and the Interaction with HIV View project. Article in Biomedical and Pharmacology Journal. 2014, doi: 10.13005/bpj/520.

(88) Lombardo S, Pandino G, Mauromicale G, Knödler M, Carle R, Schieber A. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chemistry. 2010;119(3):1175-81, doi: 10.1016/j.foodchem.2009.08.033.

(89) Mahboubi M. Cynara scolymus (artichoke) and its efficacy in management of obesity. Bulletin of Faculty of Pharmacy, Cairo University. 2018;56(2):115-20, doi: 10.1016/j.bfopcu.2018.10.003.

(90) Rezazadeh K, Rahmati-Yamchi M, Mohammadnejad L, Ebrahimi-Mameghani M, Delazar A. Effects of artichoke leaf extract supplementation on metabolic parameters in women with metabolic syndrome: Influence of TCF7L2-rs7903146 and FTO-rs9939609 polymorphisms. Phytotherapy Research. 2018;32(1):84-93, doi: 10.1002/ptr.5951.

(91) Kwon E, Kim S, Choi M-.ñ Luteolin-Enriched Artichoke Leaf Extract Alleviates the Metabolic Syndrome in Mice with High-Fat Diet-Induced Obesity. Nutrients. 2018;10(8):979, doi: 10.3390/nu10080979.

(92) Costabile A, Kolida S, Klinder A, Gietl E, Buerlein M, Frohberg C, et al. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. British Journal of Nutrition. 2010;104(7):1007-17, doi: 10.1017/S0007114510001571.

(93) Villiger A, Sala F, Suter A, Butterweck V. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome. Phytomedicine. 2015;22(1):138-44, doi: 10.1016/j.phymed.2014.11.015.

(94) Mohamed SH, Ahmed HH, Farrag AR, Abdel-Azim N, Shahat A. Cynara scolymus for relieving on nonalcoholic steatohepatitis induced in rats. International Journal of Pharmacy and Pharmaceutical Sciences. 2013;5:57-66.

(95) Cho K, Kim EJ, Kim MY, Kim JS, Han C, Lee B. Antiobesity and antidiabetic effects of Jerusalem artichoke and purple sweet potato in the diet‐induced obese rats. The FASEB Journal. 2010;24(s1):722.3-722.3, doi: 10.1096/FASEBJ.24.1_SUPPLEMENT.722.3.

(96) Rondanelli M, Giacosa A, Orsini F, Opizzi A, Villani S. Appetite Control and Glycaemia Reduction in Overweight Subjects treated with a Combination of Two Highly Standardized Extracts from Phaseolus vulgaris and Cynara scolymus. Phytotherapy Research. 2011;25(9):1275-82, doi: 10.1002/ptr.3425.

(97) Ardalani H, Jandaghi P, Meraji A, Hassanpour Moghadam M. The Effect of Cynara scolymus on Blood Pressure and BMI in Hypertensive Patients: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Complementary Medicine Research. 2020;27(1):40-6, doi: 10.1159/000502280.

(98) Muni Swamy G, Ramesh G, Devi Prasad R, Meriga B. Astragalin, (3-O-glucoside of kaempferol), isolated from Moringa oleifera leaves modulates leptin, adiponectin secretion and inhibits adipogenesis in 3T3-L1 adipocytes. Archives of Physiology and Biochemistry. 2020, doi: 10.1080/13813455.2020.1740742.

(99) Wu T, Yang L, Guo X, Zhang M, Liu R, Sui W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food and Function. 2018;9(4):2112-20, doi: 10.1039/c7fo02061a.

(100) Zou T, Kang Y, Wang B, de Avila JM, You J, Zhu MJ, et al. Raspberry supplementation reduces lipid accumulation and improves insulin sensitivity in skeletal muscle of mice fed a high-fat diet. Journal of Functional Foods. 2019;63:103572, doi: 10.1016/j.jff.2019.103572.

(101) Machado AM, da Silva NBM, Chaves JBP, Alfenas R de CG. Consumption of yacon flour improves body composition and intestinal function in overweight adults: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition ESPEN. 2019;29:22-9, doi: 10.1016/j.clnesp.2018.12.082.

(102) Wang Z, Lu J, Zhou J, Sun W, Qiu Y, Chen W, et al. Modulation of the Gut Microbiota by Shen-Yan-Fang-Shuai Formula Improves Obesity Induced by High-Fat Diets. Frontiers in Microbiology. 2020;11:1-12, doi: 10.3389/fmicb.2020.564376.

(103) Moyano G, Sáyago-Ayerdi SG, Largo C, Caz V, Santamaria M, Tabernero M. Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management. Journal of Functional Foods. 2016;21:1-9, doi: 10.1016/j.jff.2015.11.011.

(104) Diez P, Vezza T, Rodríguez-Nogales A, Ruiz-Malagón AJ, Hidalgo-García L, Garrido-Mesa J, et al. The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Research International. 2020;127:108722, doi: 10.1016/j.foodres.2019.108722.

(105) Janssens PLHR, Hursel R, Westerterp-Plantenga MS. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance. Appetite. 2014;77:44-9, doi: 10.1016/j.appet.2014.02.018.

(106) Li R, Lan Y, Chen C, Cao Y, Huang Q, Ho CT, et al. Anti-obesity effects of capsaicin and the underlying mechanisms: A review. Food and Function. 2020:7356-70, doi: 10.1039/d0fo01467b.

(107) Zheng J, Zheng S, Feng Q, Zhang Q, Xiao X. Dietary capsaicin and its anti-obesity potency: From mechanism to clinical implications. Bioscience Reports. 2017, doi: 10.1042/BSR20170286.

(108) Ghosh N, Das A, Sen CK. Nutritional supplements and functional foods: Functional significance and global regulations. Nutraceutical and Functional Food Regulations in the United States and around the World. Elsevier; 2019. p. 13-35.

(109) OMS. Substandard and falsified medical products. 2018.

(110) Attaran A, Barry D, Basheer S, Bate R, Benton D, Chauvin J, et al. How to achieve international action on falsified and substandard medicines. BMJ (Online). 2012;345(7884), doi: 10.1136/bmj.e7381.

(111) Geyer H, Parr MK, Koehler K, Mareck U, Schänzer W, Thevis M. Nutritional supplements cross-contaminated and faked with doping substances. Journal of Mass Spectrometry. 2008:892-902, doi: 10.1002/jms.1452.

(112) Tang MHY, Chen SPL, Ng SW, Chan AYW, Mak TWL. Case series on a diversity of illicit weight-reducing agents: from the well known to the unexpected. British Journal of Clinical Pharmacology. 2011;71(2):250-3, doi: 10.1111/j.1365-2125.2010.03822.x.

(113) van der Bijl P. Dietary supplements containing prohibited substances: A review (Part 1). South African Journal of Sports Medicine. 2014;26:59, doi: 10.17159/2413-3108/2014/v26i2a398.

(114) Kim HJ, Lee JH, Park HJ, Cho SH, Cho S, Kim WS. Monitoring of 29 weight loss compounds in foods and dietary supplements by LC-MS/MS. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 2014;31(5):777-83, doi: 10.1080/19440049.2014.888497.

(115) Lee J. Further research on the biological activities and the safety of raspberry ketone is needed. NFS Journal. 2016;2:15-8, doi: 10.1016/j.nfs.2015.12.001.

(116) Maggi F, Ricciutelli M, Iannarelli R, Papa F, Foddai S, Toniolo C, et al. Analysis of Food Supplement with Unusual Raspberry Ketone Content. Journal of Food Processing and Preservation. 2017;41(1):e13019, doi: 10.1111/jfpp.13019.

(117) Byard RW A. Review of the Potential Forensic Significance of Traditional Herbal Medicines. Journal of Forensic Sciences. 2010;55(1):89-92, doi: 10.1111/j.1556-4029.2009.01252.x.

(118) Mathon C, Ankli A, Reich E, Bieri S, Christen P. Screening and determination of sibutramine in adulterated herbal slimming supplements by HPTLC-UV densitometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 2014;31(1):15-20, doi: 10.1080/19440049.2013.861934.

(119) FDA. Recalls, Market Withdrawals, & Safety Alerts. 2021.

(120) FDA. MyNicNaxs, LLC Issues Voluntary Nationwide Recall of Various Dietary Supplements Due to Undeclared Active Pharmaceutical Ingredient (API). 2020.

(121) FDA. Safety Alerts & Advisories - Adverse Events with Ephedra and Other Botanical Dietary Supplements. Center for Food Safety and Applied Nutrition; 2014.

(122) Colombo F, Di Lorenzo C, Biella S, Vecchio S, Frigerio G, Restani P. Adverse effects to food supplements containing botanical ingredients. Journal of Functional Foods. 2020;72:103990, doi: 10.1016/j.jff.2020.103990.

(123) Hsu YW, Tsai CF, Chen WK, Huang CF, Yen CC. A subacute toxicity evaluation of green tea (Camellia sinensis) extract in mice. Food and Chemical Toxicology. 2011;49(10):2624-30, doi: 10.1016/j.fct.2011.07.007.

(124) Lambert JD, Kennett MJ, Sang S, Reuhl KR, Ju J, Yang CS. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology. 2010;48(1):409-16, doi: 10.1016/j.fct.2009.10.030.

(125) Dostal AM, Samavat H, Bedell S, Torkelson C, Wang R, Swenson K, et al. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: Results of the Minnesota Green TeaTrial. Food and Chemical Toxicology. 2015;83:26-35, doi: 10.1016/j.fct.2015.05.019.

(126) EFSA. Panel de respuesta Scientific opinion on the safety of green tea catechins. EFSA Journal. 2018;16(4), doi: 10.2903/j.efsa.2018.5239.

(127) EFSA. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Coumarin. EFSA Journal. 2004;2(12), doi: 10.2903/j.efsa.2004.104.

(128) Saito M, Ueno M, Ogino S, Kubo K, Nagata J, Takeuchi M. High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food and Chemical Toxicology. 2005;43(3):411-9, doi: 10.1016/j.fct.2004.11.008.

(129) Jacociunas LV, de Andrade HHR, Lehmann M, de Abreu BRR, Ferraz A de BF, da Silva J, et al. Artichoke induces genetic toxicity in the cytokinesis-block micronucleus (CBMN) cytome assay. Food and Chemical Toxicology. 2013;55:56-9, doi: 10.1016/j.fct.2012.12.024.

(130) Zan MA, Ferraz ABF, Richter MF, Picada JN, de Andrade HHR, Lehmann M, et al. In Vivo Genotoxicity Evaluation of an Artichoke ( Cynara scolymus L.) Aqueous Extract. Journal of Food Science. 2013;78(2):T367-71, doi: 10.1111/1750-3841.12034.

(131) Chen T-Y, Wang MMC, Hsieh S-K, Hsieh M-H, Chen W-Y, Tzen JTC. Pancreatic lipase inhibition of strictinin isolated from Pu’er tea (Cammelia sinensis) and its anti-obesity effects in C57BL6 mice. Journal of Functional Foods. 2018;48:1-8, doi: https://doi.org/10.1016/j.jff.2018.06.020.

(132) Yuda N, Tanaka M, Suzuki M, Asano Y, Ochi H, Iwatsuki K. Polyphenols Extracted from Black Tea (Camellia sinensis) Residue by Hot-Compressed Water and Their Inhibitory Effect on Pancreatic Lipase in vitro. Journal of Food Science. 2012;77(12):254-61, doi: 10.1111/j.1750-3841.2012.02967.x.

(133) Zeng L, Yan J, Luo L, Zhang D. Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes. Food and Function. 2015;6(6):2008-16, doi: 10.1039/c5fo00362h.

(134) Cheng M, Zhang X, Zhu J, Cheng L, Cao J, Wu Z, et al. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food and Function. 2018;9(2):1079-87, doi: 10.1039/c7fo01570d.

(135) Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food and Function. 2014;5(10):2420-9, doi: 10.1039/c4fo00095a.

(136) Zhu YT, Ren XY, Yuan L, Liu YM, Liang J, Liao X. Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLC-MS/MS. Food Chemistry. 2015;173:521-6, doi: 10.1016/j.foodchem.2014.10.087.

(137) Fei Q, Gao Y, Zhang X, Sun Y, Hu B, Zhou L, et al. Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro. Journal of Agricultural and Food Chemistry. 2014;62(39):9507-14, doi: 10.1021/jf5032907.

(138) Lu C, Zhu W, Shen C-L, Gao W. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes. PLoS ONE. 2012;7(6):e38332, doi: 10.1371/journal.pone.0038332.

(139) Guo X, Cheng M, Zhang X, Cao J, Wu Z, Weng P. Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition. International Journal of Food Science and Technology. 2017;52(8):1723-30, doi: 10.1111/ijfs.13479.

(140) Zhu J, Cai R, Tan Y, Wu X, Wen Q, Liu Z, et al. Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. Journal of Functional Foods. 2020;64:103621, doi: 10.1016/j.jff.2019.103621.

(141) Jin D, Xu Y, Mei X, Meng Q, Gao Y, Li B, et al. Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats. Journal of Functional Foods. 2013;5(3):1142-50, doi: 10.1016/j.jff.2013.03.011.

(142) Glisan SL, Grove KA, Yennawar NH, Lambert JD. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chemistry. 2017;216:296-300, doi: 10.1016/j.foodchem.2016.08.052.

(143) Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H. Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition. 2011;27(3):287-92, doi: 10.1016/j.nut.2010.01.019.

(144) Park B, Lee S, Lee B, Kim I, Baek N, Lee TH, et al. New ethanol extraction improves the anti-obesity effects of black tea. Archives of Pharmacal Research. 2016;39(3):310-20, doi: 10.1007/s12272-015-0674-8.

(145) Remely M, Ferk F, Sterneder S, Setayesh T, Roth S, Kepcija T, et al. EGCG Prevents High Fat Diet-Induced Changes in Gut Microbiota, Decreases of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1 and MLH1 in C57BL/6J Male Mice. Oxidative Medicine and Cellular Longevity. 2017;2017:1-17, doi: 10.1155/2017/3079148.

(146) Martinez-Saez N, Ullate M, Martin-Cabrejas MA, Martorell P, Genovés S, Ramon D, et al. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chemistry. 2014;150:227-34, doi: 10.1016/j.foodchem.2013.10.100.

(147) Hussein MMA, Samy M, Arisha AH, Saadeldin IM, Alshammari GM. Anti-obesity effects of individual or combination treatment with Spirulina platensis and green coffee bean aqueous extracts in high-fat diet-induced obese rats. All Life. 2020;13(1):328-38, doi: 10.1080/26895293.2020.1781698.

(148) Huang K, Liang X, Zhong Y, He W, Wang Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. Journal of the Science of Food and Agriculture. 2015;95(9):1903-10, doi: 10.1002/jsfa.6896.

(149) Hosseinabadi S, Rafraf M, Mahmoodzadeh A, Asghari-Jafarabadi M, Asghari S. Effects of green coffee extract supplementation on glycemic indexes, leptin, and obesity values in patients with non-alcoholic fatty liver disease. Journal of Herbal Medicine. 2020;22:100340, doi: 10.1016/j.hermed.2020.100340.

(150) Bhandarkar NS, Mouatt P, Brown L, Panchal SK. Green coffee ameliorates components of diet-induced metabolic syndrome in rats. Journal of Functional Foods. 2019;57:141-9, doi: 10.1016/j.jff.2019.04.003.

(151) Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, et al. Cinnamaldehyde supplementation prevents fasting‐induced hyperphagia, lipid accumulation, and inflammation in high‐fat diet‐fed mice. BioFactors. 2016;42(2):201-11, doi: 10.1002/BIOF.1265@10.1002/(ISSN)1872-8081(CAT)VIRTUALISSUES(VI)DIABETESMELLITUSJOINTVIRTUALISSUE.

(152) Tamura Y, Iwasaki Y, Narukawa M, Watanabe T. Ingestion of Cinnamaldehyde, a TRPA1 Agonist, Reduces Visceral Fats in Mice Fed a High-Fat and High-Sucrose Diet. J Nutr Sci Vitaminol. 2012;58(1):9-13, doi: 10.3177/jnsv.58.9.

(153) Song MY, Kang SY, Kang A, Hwang JH, Park YK, Jung HW. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy. American Journal of Chinese Medicine. 2017;45(5):1017-31, doi: 10.1142/S0192415X17500549.

(154) Kwan HY, Wu J, Su T, Chao X-J, Liu B, Fu X, et al. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep. 2017;7(1):2447, doi: 10.1038/s41598-017-02263-5.

(155) Ismail NS. Protective Effects of Aqueous Extracts of Cinnamon and Ginger Herbs Against Obesity and Diabetes in Obese Diabetic Rat. World Journal of Dairy & Food Sciences. 2014;9(2):145-53, doi: 10.5829/idosi.wjdfs.2014.9.2.1137.

(156) Shen Y, Fukushima M, Ito Y, Muraki E, Hosono T, Seki T, et al. Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. Bioscience, Biotechnology and Biochemistry. 2010;74(12):2418-25, doi: 10.1271/bbb.100453.

(157) Sartorius T, Peter A, Schulz N, Drescher A, Bergheim I, Machann J, et al. Cinnamon Extract Improves Insulin Sensitivity in the Brain and Lowers Liver Fat in Mouse Models of Obesity. PLoS ONE. 2014;9(3):e92358, doi: 10.1371/journal.pone.0092358.

(158) Suk S, Seo SG, Yu JG, Yang H, Jeong E, Jang YJ, et al. A Bioactive Constituent of Ginger, 6-Shogaol, Prevents Adipogenesis and Stimulates Lipolysis in 3T3-L1 Adipocytes. Journal of Food Biochemistry. 2016;40(1):84-90, doi: 10.1111/jfbc.12191.

(159) Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM. Regulation of lipid disorders by ethanol extracts from Zingiber zerumbet in high-fat diet-induced rats. Food Chemistry. 2012;132(1):460-7, doi: 10.1016/j.foodchem.2011.11.022.

(160) Wang J, Wang P, Li D, Hu X, Chen F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. European Journal of Nutrition. 2020;59(2):699-718, doi: 10.1007/s00394-019-01938-1.

(161) Iwami M, Mahmoud FA, Shiina T, Hirayama H, Shima T, Sugita J, et al. Extract of grains of paradise and its active principle 6-paradol trigger thermogenesis of brown adipose tissue in rats. Autonomic Neuroscience: Basic and Clinical. 2011;161(1-2):63-7, doi: 10.1016/j.autneu.2010.11.012.

(162) Miyamoto M, Matsuzaki K, Katakura M, Hara T, Tanabe Y, Shido O. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization. International Journal of Biometeorology. 2015;59(10):1461-74, doi: 10.1007/s00484-015-0957-2.

(163) Haber SL, Awwad O, Phillips A, Park AE, Pham TM. Garcinia cambogia for weight loss. American Journal of Health-System Pharmacy. 2018;75(2):17-22, doi: 10.2146/ajhp160915.

(164) Amin KA, Kamel HH, Abd Eltawab MA. Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet. Lipids in Health and Disease. 2011;10(1):1-13, doi: 10.1186/1476-511X-10-6.

(165) Ben Salem M, Ksouda K, Dhouibi R, Charfi S, Turki M, Hammami S, et al. LC-MS/MS Analysis and Hepatoprotective Activity of Artichoke (Cynara scolymus L.) Leaves Extract against High Fat Diet-Induced Obesity in Rats. Biomed Res Int. 2019;2019:4851279-4851279.

(166) Okada N, Kobayashi S, Moriyama K, Miyataka K, Abe S, Sato C, et al. Helianthus tuberosus (Jerusalem artichoke) tubers improve glucose tolerance and hepatic lipid profile in rats fed a high-fat diet. Asian Pacific Journal of Tropical Medicine. 2017;10(5):439-43, doi: 10.1016/j.apjtm.2017.03.028.

(167) Mocelin R, Marcon M, Santo GD, Zanatta L, Sachett A, Schönell AP, et al. Hypolipidemic and antiatherogenic effects of Cynara scolymus in cholesterol-fed rats. Revista Brasileira de Farmacognosia. 2016;26(2):233-9, doi: 10.1016/j.bjp.2015.11.004.

(168) Nikpayam O, Faghfouri AH, Tavakoli-Rouzbehani OM, Jalali SM, Najafi M, Sohrab G. The effect of green coffee extract supplementation on lipid profile: A systematic review of clinical trial and in-vivo studies. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2020:1521-8, doi: 10.1016/j.dsx.2020.07.043.

(169) Zuñiga LY, Aceves-de la Mora MCA, González-Ortiz M, Ramos-Núñez JL, Martínez-Abundis E. Effect of Chlorogenic Acid Administration on Glycemic Control, Insulin Secretion, and Insulin Sensitivity in Patients with Impaired Glucose Tolerance. Journal of Medicinal Food. 2018;21(5):469-73, doi: 10.1089/jmf.2017.0110.

(170) Leung ACY, Cook LS, Swenerton K, Gilks B, Gallagher RP, Magliocco A, et al. Tea, coffee, and caffeinated beverage consumption and risk of epithelial ovarian cancers. Cancer Epidemiology. 2016;45:119-25, doi: 10.1016/j.canep.2016.10.010.

(171) Palacio E, Vargas R, Enrique M, Gutiérrez R, Carlos J. Hepatotoxicity due to green tea consumption (Camellia Sinensis): A review. Asociaciones Colombianas de Gastroenterología. 2013;28(1):46-52.

(172) Rossi S, Navarro VJ. Herbs and liver injury: A clinical perspective. Clinical Gastroenterology and Hepatology. 2014;12(7):1069-76, doi: 10.1016/j.cgh.2013.07.030.

(173) García-Cortés M, Borraz Y, Lucena MI, Peláez G, Salmerón J, Diago M, et al. Hepatotoxicidad secundaria a «productos naturales»: Análisis de los casos notificados al Registro Español de Hepatotoxicidad. Revista Espanola de Enfermedades Digestivas. 2008;100(11):688-95, doi: 10.4321/s1130-01082008001100004.

(174) Saleh IG, Ali Z, Abe N, Wilson FD, Hamada FM, Abd-Ellah MF, et al. Effect of green tea and its polyphenols on mouse liver. Fitoterapia. 2013;90:151-9, doi: 10.1016/j.fitote.2013.07.014.

(175) Hajimonfarednejad M, Ostovar M, Raee MJ, Hashempur MH, Mayer JG, Heydari M. Cinnamon: A systematic review of adverse events. Clinical Nutrition. 2019:594-602, doi: 10.1016/j.clnu.2018.03.013.

(176) Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A. Toxicology and risk assessment of coumarin: Focus on human data. Molecular Nutrition and Food Research. 2010:228-39, doi: 10.1002/mnfr.200900281.

(177) Yun J, You JR, Kim YS, Kim SH, Cho EY, Yoon JH, et al. In vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regulatory Toxicology and Pharmacology. 2018;95:115-23, doi: 10.1016/j.yrtph.2018.02.017.

(178) Kort DH, Lobo RA. Preliminary evidence that cinnamon improves menstrual cyclicity in women with polycystic ovary syndrome: A randomized controlled trial. American Journal of Obstetrics and Gynecology. 2014;211(5):487.e1-487.e6, doi: 10.1016/j.ajog.2014.05.009.

(179) Kind F, Scherer K, Bircher AJ. Allergic contact stomatitis to cinnamon in chewing gum mistaken as facial angioedema. Allergy: European Journal of Allergy and Clinical Immunology. 2010;65(2):276-7, doi: 10.1111/j.1398-9995.2009.02152.x.

(180) Georgakopoulou EA. Cinnamon contact stomatitis. journal of dermatological case reports. 2010;2:28-9.

(181) Brancheau D, Patel B, Zughaib M. Do cinnamon supplements cause acute hepatitis? American Journal of Case Reports. 2015;16:250-4, doi: 10.12659/AJCR.892804.

(182) Mas Ordeig A, Bordón García N. Hepatotoxicity caused by Garcinia cambogia. Gastroenterologia y Hepatologia. 2020;43(3):134-5, doi: 10.1016/j.gastre.2019.08.010.

(183) Kim YJ, Choi MS, Park YB, Kim SR, Lee MK, Jung UJ. Garcinia cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World Journal of Gastroenterology. 2013;19(29):4689-701, doi: 10.3748/wjg.v19.i29.4689.

(184) Hossain T, Fridman D, Rivera P. Hydroxycitric Acid Present in Garcinia Cambogia Diet Pills Resulting in Starvation Ketoacidosis. Chest. 2017;152(4):A284, doi: 10.1016/j.chest.2017.08.310.

(185) Maghbooli M, Golipour F, Moghimi Esfandabadi A, Yousefi M. Comparison Between the Efficacy of Ginger and Sumatriptan in the Ablative Treatment of the Common Migraine. Phytotherapy Research. 2014;28(3):412-5, doi: 10.1002/ptr.4996.

(186) Revol B, Gautier-Veyret E, Arrivé C, Fouilhé Sam-Laï N, McLeer-Florin A, Pluchart H, et al. Pharmacokinetic herb-drug interaction between ginger and crizotinib. British Journal of Clinical Pharmacology. 2020:1892-3, doi: 10.1111/bcp.13862.

(187) Paul CW, Didia BC. The Effect of Methanolic Extract of Moringa oleifera Lam Roots on the Histology of Kidney and Liver of Guinea Pigs. Asian Journal of Medical Sciences. 2012;4(1):55-60.

(188) De Oliveira RB, De Paula DAC, Rocha BA, Franco JJ, Gobbo-Neto L, Uyemura SA, et al. Renal toxicity caused by oral use of medicinal plants: The yacon example. Journal of Ethnopharmacology. 2011;133(2):434-41, doi: 10.1016/j.jep.2010.10.019.

(189) Pabalan N, Jarjanazi H, Ozcelik H. The impact of capsaicin intake on risk of developing gastric cancers: a meta-analysis. Journal of gastrointestinal cancer. 2014;45(3):334-41, doi: 10.1007/s12029-014-9610-2.

Publicado

2022-01-02

Cómo citar

Bellaizac Riascos, J., Chito Trujillo, D. M., & Rada Mendoza, M. (2022). Suplementos dietéticos comerciales para el control de sobrepeso: fuentes naturales de fácil acceso, mecanismos de acción y efectos adversos. Revista Española De Nutrición Humana Y Dietética, 26(Supl. 1). https://doi.org/10.14306/renhyd.26.s1.1352

Número

Sección

Artículos de revisión