Alimentos ricos en ácidos grasos v-3 libres de contaminantes y aptos para vegetarianos, y su importancia en el desarrollo neurológico normal

Autores/as

  • Ángeles Molina-Peralta Estudis de Ciències de la Salut, Institut Internacional de Postgrau de la Universitat Oberta de Catalunya (UOC), Barcelona.
  • Núria Mach Estudis de Ciències de la Salut, Institut Internacional de Postgrau de la Universitat Oberta de Catalunya (UOC), Barcelona. INRA, Département de Génétique Animale et Biologie Intégrative, Jouy-en-Josas.

DOI:

https://doi.org/10.14306/renhyd.18.2.26

Palabras clave:

Ácidos grasos omega-3, Dieta vegetariana, Desarrollo infantil

Resumen

Los ácidos grasos poliinsaturados esenciales de cadena larga v-3 como el ácido a-linolénico (ALA) y sus derivados, ácido eicosapentaenoico (EPA) y ácido docosahexaenoico (DHA), intervienen en la función y el crecimiento del tejido nervioso como componentes estructurales de las membranas neuronales. En vegetarianos y veganos, la ingesta de v-3 por parte de la madre durante el embarazo y la lactancia debe proceder de recursos no animales, limpios de metales pesados y dioxinas para asegurar el normal desarrollo de las estructuras neuronales en los niños. Se consultaron estudios científicos en modelos animales, celulares, ensayos clínicos y revisiones en las siguientes bases de datos electrónicas especializadas: PubMed central (PMC)-NBCI, Elsevier Journal, Scielo España, Scirus, y Science Direct, para establecer el estado actual del potencial efecto del consumo de alimentos ricos en v-3 como las algas, hongos, bacterias marinas y otras fuentes vegetales, aptas para vegetarianos y veganos, sobre el normal desarrollo neurológico infantil.

Citas

Bourre JM, Bonneil M, Chaudiere J, Clement M, Dumont O, Durand G, et al. Structural and functional importance of dietary polyunsaturated fatty acids in the nervous system. Adv Exp Med Biol. 1992; 318: 211-29.

Farquharson J, Jamieson EC, Abbasi KA, Patrick WJ, Logan RW, Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child. 1995; 72(3): 198-203.

Mayes C, Burdge GC, Bingham A, Murphy JL, Tubman R, Wootton SA. Variation in [U-13C] alpha linolenic acid absorption, betaoxidation and conversion to docosahexaenoic acid in the preterm infant fed a DHA-enriched formula. Pediatr Res. 2006; 59(2): 271-5.

Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006; 67(12): 1954-67.

O’Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE, et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics. 2001; 108(2): 359-71.

Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003; 111(1): e39-44.

Drouillet P, Kaminski M, De Lauzon-Guillain B, Forhan A, Ducimetiere P, Schweitzer M, et al. Association between maternal seafood consumption before pregnancy and fetal growth: evidence for an association in overweight women. The EDEN mother-child cohort. Paediatr Perinat Epidemiol. 2009; 23(1): 76-86.

Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007; 369(9561): 578-85.

Innis SM, Friesen RW. Essential n-3 fatty acids in pregnant women and early visual acuity maturation in term infants. Am J Clin Nutr. 2008; 87(3): 548-57.

Simopoulos AP. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet. 2003; 92: 1-22.

Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002; 56(8): 365-79.

Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009; 109(7): 1266-82.

Davis BC, Kris-Etherton PM. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 2003; 78(3 Suppl): 640S-646S.

Domingo JL, Bocio A. Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review. Environ Int. 2007; 33(3): 397-405.

Domingo JL, Bocio A, Marti-Cid R, Llobet JM. Benefits and risks of fish consumption Part II. RIBEPEIX, a computer program to optimize the balance between the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007; 230(2-3): 227-33.

Domingo JL, Bocio A, Falco G, Llobet JM. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 2007; 230(2-3): 219-26.

Arterburn LM, Oken HA, Bailey Hall E, Hamersley J, Kuratko CN, Hoffman JP. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. J Am Diet Assoc. 2008; 108(7): 1204-9.

Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004; 65(6): 635-48.

Valenzuela RB, Tapia GO, González M, Valenzuela A. Ácidos grasos omega-3 (EPA y DHA) y su aplicación en diversas situaciones clínicas. Rev Chil Nutr. 2011; 38(8): 356-67.

Vanhouwelingen AC, Puls J, Hornstra G. Fetal Essential Fatty-Acid (Efa) Status during Early Human-Development-Relationship with Maternal Efa Status. Am J Clin Nutr. 1993; 57(5):S814.

Vonhouwelingen AC, Puls J, Hornstra G. Essential Fatty-Acid Status during Early Human-Development. Early Hum Dev. 1992; 31(2): 97-111.

Dupont J. Fats and oils. Sadler M, editor Encyclopedia of Human Nutrition USA. Academic Press. 1999: 719–29.

Benatti P, Peluso G, Nicolai R, Calvani M. Polyunsaturated fatty acids: Biochemical, nutritional and epigenetic properties. J Am Coll Nutr. 2004; 23(4): 281-302.

Uauy R, Mena P, Rojas C. Essential fatty acids in early life: structural and functional role. Proc Nutr Soc. 2000; 59(1): 3-15.

Kang JX. Balance of omega-6/omega-3 essential fatty acids is important for health. The evidence from gene transfer studies. World Rev Nutr Diet. 2005, 95: 93-102.

Qiu X. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fatty Acids. 2003; 68(2): 181-6.

Salem N Jr, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001; 36(9): 945-59.

Sprecher H, Chen Q, Yin FQ. Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process. Lipids. 1999; 34 Suppl: S153-6.

Burdge GC, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002; 88(4): 411-20.

Kitajka K, Puskas LG, Zvara A, Hackler L Jr, Barcelo-Coblijn G, Yeo YK, et al. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A. 2002; 99(5): 2619-24.

Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Med. 2008; 10(4): 219-35.

de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000; 290(5499): 2140-4.

Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T, et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics. 2004; 3(7): 692-703.

Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alphalinolenic acid metabolism in young men*. Br J Nutr. 2002; 88(4): 355-63.

Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005; 75(4): 275-93.

McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids. 2006; 75(4-5): 329-49.

Hamilton L, Greiner R, Salem N Jr, Kim HY. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids. 2000; 35(8): 863-9.

Newton AC. Protein kinase C. structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev. 2001; 101(8): 2353-64.

Rauch ME, Ferguson CG, Prestwich GD, Cafiso DS. Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spinlabeled

phosphatidylinositol 4,5-bisphosphate in lipid bilayers. J Biol Chem. 2002; 277(16): 14068-76.

McNamara RK, Lenox RH. The myristoylated alanine-rich C kinase substrate: a lithium-regulated protein linking cellular signaling and cytoskeletal plasticity. Clinical Neuroscience Research. 2004; 4(3-4): 155-69.

Bolsover SR. Calcium signalling in growth cone migration. Cell Calcium. 2005; 37(5): 395-402.

McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids. 2006; 75(4-5): 237-57.

Hundle B, McMahon T, Dadgar J, Messing RO. Overexpression of epsilon-protein kinase C enhances nerve growth factorinduced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. J Biol Chem. 1995; 270(50): 30134-40.

Vaughan PF, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol. 1998; 18(2): 125-55.

Zimmer L, Hembert S, Durand G, Breton P, Guilloteau D, Besnard JC, et al. Chronic n-3 polyunsaturated fatty acid dietdeficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neurosci Lett. 1998; 240(3): 177-81.

Kodas E, Galineau L, Bodard S, Vancassel S, Guilloteau D, Besnard JC, et al. Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J Neurochem. 2004; 89(3): 695-702.

Aid S, Vancassel S, Poumes-Ballihaut C, Chalon S, Guesnet P, Lavialle M. Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J Lipid Res. 2003; 44(8): 1545-51.

Bhattacharyya S, Puri S, Miledi R, Panicker MM. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms. Proc Natl Acad Sci USA. 2002; 99(22): 14470-5.

Ramamoorthy S, Giovanetti E, Qian Y, Blakely RD. Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J Biol Chem. 1998; 273(4): 2458-66.

Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem. 2003; 278(24): 22168-74.

Apparsundaram S, Schroeter S, Giovanetti E, Blakely RD. Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins. J Pharmacol Exp Ther. 1998; 287(2): 744-51.

Kodas E, Vancassel S, Lejeune B, Guilloteau D, Chalon S. Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: critical role of developmental stage. J Lipid Res. 2002; 43(8): 1209-19.

Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A. 1986; 83(11): 4021-5.

Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem N Jr. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res. 2001; 42(3): 419-27.

Demar JC, Martino C, Lefkowitz W, Salem N. Effect of dietary docosahexaenoic acid on the in vivo net biosynthesis of docosahexaenoic acid from a-linolenic acid, in rat tissues. Faseb Journal. 2007; 21(5): A239.

Ikemoto A, Nitta A, Furukawa S, Ohishi M, Nakamura A, Fujii Y, et al. Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci Lett. 2000; 285(2): 99-102.

Ahmad A, Moriguchi T, Salem N. Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol. 2002; 26(3): 210-8.

Calderon F, Kim HY. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem. 2004; 90(4):979-88.

Moriguchi T, Greiner RS, Salem N Jr. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem. 2000; 75(6): 2563-73.

Levant B, Zarcone TJ, Fowler SC. Developmental effects of dietary n-3 fatty acids on activity and response to novelty. Physiol Behav 2010; 101(1): 176-183.

Greiner RS, Moriguchi T, Slotnick BM, Hutton A, Salem N. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol Behav. 2001; 72(3): 379-85.

Carrie I, Clement M, de Javel D, Frances H, Bourre JM. Phospholipid supplementation reverses behavioral and biochemical alterations induced by n-3 polyunsaturated fatty acid deficiency in mice. J Lipid Res. 2000; 41(3): 473-80.

Moriguchi T, Salem N Jr. Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem. 2003; 87(2): 297-309.

Reisbick S, Neuringer M, Gohl E, Wald R, Anderson GJ. Visual attention in infant monkeys: effects of dietary fatty acids and age. Dev Psychol. 1997; 33(3): 387-95.

Reisbick S, Neuringer M, Hasnain R, Connor WE. Polydipsia in rhesus monkeys deficient in omega-3 fatty acids. Physiol Behav.1990; 47(2): 315-23.

Reisbick S, Neuringer M, Hasnain R, Connor WE. Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol Behav. 1994; 55(2): 231-9.

Farquharson J, Cockburn F, Patrick WA, Jamieson EC, Logan RW. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet. 1992; 340(8823): 810-3.

Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA. 2000; 284(15): 1939-47.

Stewart AL, Rifkin L, Amess PN, Kirkbride V, Townsend JP, Miller DH, et al. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet. 1999; 353(9165): 1653-7.

Koletzko B, Larque E, Demmelmair H. Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med. 2007; 35 Suppl 1: S5-11.

Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007; 98(5): 873-7.

Gil-Campos M, Dalmau Serra J. [Importance of docosahexaenoic acid (DHA): Functions and recommendations for its ingestion in infants]. An Pediatr (Barc). 2010; 73(3): 142 e141-8.

Colombo J, Kannass KN, Shaddy DJ, Kundurthi S, Maikranz JM, Anderson CJ, et al. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004; 75(4): 1254-67.

Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 2004; 15(4): 394-402.

Fewtrell MS. Long-chain polyunsaturated fatty acids in early life: effects on multiple health outcomes. A critical review of current status, gaps and knowledge. Nestle Nutr Workshop Ser Pediatr Program. 2006; 57: 203-14; discussion 215-21.

de Groot RH, Hornstra G, van Houwelingen AC, Roumen F. Effect of alpha-linolenic acid supplementation during pregnancy on maternal and neonatal polyunsaturated fatty acid status and pregnancy outcome. Am J Clin Nutr. 2004; 79(2): 251-60.

Francois CA, Connor SL, Bolewicz LC, Connor WE. Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. Am J Clin Nutr. 2003; 77(1): 226-33.

Ponder DL, Innis SM, Benson JD, Siegman JS. Docosahexaenoic acid status of term infants fed breast milk or infant formula containing soy oil or corn oil. Pediatr Res. 1992; 32(6): 683-8.

Ayerza R. The seed’s protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors. J Oleo Sci. 2009; 58(7): 347-54.

Rao S, Abdel-Reheem M, Bhella R, McCracken C, Hildebrand D. Characteristics of high alpha-linolenic acid accumulation in seed oils. Lipids. 2008; 43(8): 749-55.

Castro-González MI. Ácidos grasos ω 3: beneficios y fuentes. INCI. 2002; 27(3): 128-36.

Enos RT, Velazquez KT, McClellan JL, Cranford TL, Walla MD, Murphy EA. Reducing the Dietary Omega-6:Omega-3 Utilizing alpha-Linolenic Acid; Not a Sufficient Therapy for Attenuating High-Fat-Diet-Induced Obesity Development Nor Related Detrimental Metabolic and Adipose Tissue Inflammatory Outcomes. PLoS One. 2014; 9(4): e94897.

Gupta A, Barrow CJ, Puri M. Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances. 2012; 30(6): 1733-45.

Mergler D, Anderson HA, Chan LH, Mahaffey KR, Murray M, Sakamoto M, et al. Methylmercury exposure and health effects in humans: a worldwide concern. Ambio. 2007; 36(1): 3-11.

Domingo JL. Omega-3 fatty acids and the benefits of fish consumption: is all that glitters gold? Environ Int. 2007; 33(7): 993-8.

Emder PJ, Jack MM. Iodine-induced neonatal hypothyroidism secondary to maternal seaweed consumption: A common practice in some Asian cultures to promote breast milk supply. J Paediatr Child Health. 2011; 47(10): 750-2.

Chung HR, Shin CH, Yang SW, Choi CW, Kim BI. Subclinical Hypothyroidism in Korean Preterm Infants Associated with High Levels of Iodine in Breast Milk. J Clin Endocrinol Metab. 2009; 94(11): 4444-7.

Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003; 20(7-8): 491-515.

Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol. 2005; 25(3): 73-95.

Henderson RJ, Leftley JW, Sargent JR. Lipid-Composition and Biosynthesis in the Marine Dinoflagellate Crypthecodinium-Cohnii. Phytochemistry. 1988; 27(6): 1679-83.

Meireles LA, Guedes AC, Malcata FX. Lipid class composition of the microalga Pavlova lutheri: Eicosapentaenoic and docosahexaenoic acids. Jour J Agric Food Chem. 2003; 51(8):2237-41.

Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids. 2006; 41(8): 739-47.

Hinzpeter B, Schene IC, Masson L. Alternativas biotecnológicas para la producción de ácidos grasospoliinsaturados v-3. Grasas y Aceites. 2006; 57(3): 336-42.

Iglesias-Rodriguez MD, Buitenhuis ET, Raven JA, Schofield O, Poulton AJ, Gibbs S, et al. Response to Comment on “Phytoplankton Calcification in a High-CO2 World”. Science. 2008; 322(5907).

Wollenberger L, Breitholtz M, Ole Kusk K, Bengtsson BE. Inhibition of larval development of the marine copepod Acartia tonsa by four synthetic musk substances. Sci Total Environ. 2003; 305(1-3): 53-64.

Goldstein S. Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Annu Rev Microbiol 1973; 27: 13-26.

Yang HL, Lu CK, Chen SF, Chen YM, Chen YM. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol. (NY) 2010; 12(2): 173-85.

Abril R, Garrett J, Zeller SG, Sander WJ, Mast RW. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part V: target animal safety/toxicity study in growing swine. Regul Toxicol Pharmacol. 2003; 37(1): 73-82.

Hammond BG, Mayhew DA, Kier LD, Mast RW, Sander WJ. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Regul Toxicol Pharmacol. 2002; 35(2 Pt 1): 255-65.

Morita E, Kumon Y, Nakahara T, Kagiwada S, Noguchi T. Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21. Mar Biotechnol (NY). 2006; 8(3): 319-27.

Sijtsma L, de Swaaf ME. Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol. 2004; 64(2): 146-53.

Nichols DS, Nichols PD, Mcmeekin TA. Polyunsaturated Fatty-Acids in Antarctic Bacteria. Antarctic Sci. 1993; 5(2): 149-60.

Skerratt JH, Bowman JP, Nichols PD. Shewanella olleyana sp nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol. 2002; 52: 2101-6.

Yazawa K. Production of eicosapentaenoic acid from marine bacteria. Lipids. 1996; 31: S297-S300.

Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, et al. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids. 2000; 35(10): 1061-4.

Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng. 1999; 87(1): 1-14.

Jang HD, Lin YY, Yang SS. Polyunsaturated fatty acid production with Mortierella alpina by solid substrate fermentation. Bot Bull Acad Sin. 2000; 41(1): 41-8.

Williams CM, Burdge G. Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc. 2006; 65(1): 42-50.

Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TAB, Allen NE, Key TJ. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr. 2005; 82(2): 327-34.

Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002; 102(11): 1621-1630.

Simopoulos AP, Leaf A, Salem N Jr. Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann Nutr Metab. 1999; 43(2): 127-130.

Conquer JA, Holub BJ. Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects. J Nutr. 1996; 126(12): 3032-3039.

Sanders TA, Gleason K, Griffin B, Miller GJ. Influence of an algal triacylglycerol containing docosahexaenoic acid (22:6n-3) and docosapentaenoic acid (22 : 5n-6) on cardiovascular risk factors in healthy men and women. Br J Nutr. 2006; 95(3): 525-531.

Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004; 24: 597-615.

Descargas

Publicado

2014-04-28

Cómo citar

Molina-Peralta, Ángeles, & Mach, N. (2014). Alimentos ricos en ácidos grasos v-3 libres de contaminantes y aptos para vegetarianos, y su importancia en el desarrollo neurológico normal. Revista Española De Nutrición Humana Y Dietética, 18(2), 89–99. https://doi.org/10.14306/renhyd.18.2.26

Artículos más leídos del mismo autor/a